Skip to contents
devtools::load_all()
# library(lossrx)

data("claims_transactional")
data("losses")
data("exposures")

latest_eval <- losses |> dplyr::filter(eval_date == max(.data$eval_date))
wc_dat <- latest_eval |> dplyr::filter(coverage == "WC")
al_dat <- latest_eval |> dplyr::filter(coverage == "AL")

lossrx Datasets

lossrx comes with some built in data for example usage, including:

  • a simulated transactional claims data.frame
  • a suite of example WC and AL lossruns combined into a single data.frame
  • sample exposure data for WC ($ payroll) and AL (vehicles or miles driven)

Loss Data

plot_distr(
  ~ total_incurred | coverage,
  latest_eval,
  mod.method = "split"
)

Top 10 Rows:

head(losses) |>
  kable(format = "html", digits = 2) |>
  kable_styling()
eval_date devt_age occurrence_number coverage member program_year loss_date rept_date hire_date report_lag report_lag_group day_of_week claim_type claimant_state loss_state cause department tenure tenure_group claimant_age claimant_age_group driver_age driver_age_group status total_paid total_incurred count open_count close_count incurred_group
2019-12-31 108 1 WC Member 2 2011 2011-01-03 2011-01-04 2000-09-11 1 1 to 3 Days Monday WCIN CA CA Strain / Overexertion Drivers 19.30 10+ Years 51 30+ Years Old NA (Missing) C 4149.66 4149.66 1 0 1 $0-$50K
2019-08-31 104 1 WC Member 2 2011 2011-01-03 2011-01-04 2000-09-11 1 1 to 3 Days Monday WCIN CA CA Strain / Overexertion Drivers 18.97 10+ Years 51 30+ Years Old NA (Missing) C 4149.66 4149.66 1 0 1 $0-$50K
2019-04-30 100 1 WC Member 2 2011 2011-01-03 2011-01-04 2000-09-11 1 1 to 3 Days Monday WCIN CA CA Strain / Overexertion Drivers 18.63 10+ Years 51 30+ Years Old NA (Missing) C 4149.66 4149.66 1 0 1 $0-$50K
2018-12-31 96 1 WC Member 2 2011 2011-01-03 2011-01-04 2000-09-11 1 1 to 3 Days Monday WCIN CA CA Strain / Overexertion Drivers 18.30 10+ Years 51 30+ Years Old NA (Missing) C 4149.66 4149.66 1 0 1 $0-$50K
2018-08-31 92 1 WC Member 2 2011 2011-01-03 2011-01-04 2000-09-11 1 1 to 3 Days Monday WCIN CA CA Strain / Overexertion Drivers 17.97 10+ Years 51 30+ Years Old NA (Missing) C 4149.66 4149.66 1 0 1 $0-$50K
2018-04-30 88 1 WC Member 2 2011 2011-01-03 2011-01-04 2000-09-11 1 1 to 3 Days Monday WCIN CA CA Strain / Overexertion Drivers 17.63 10+ Years 51 30+ Years Old NA (Missing) C 4149.66 4149.66 1 0 1 $0-$50K

Summary:

print(dfSummary(losses, 
                varnumbers   = FALSE, 
                valid.col    = FALSE, 
                graph.magnif = 0.76),
      method = 'render')

Data Frame Summary

losses

Dimensions: 79748 x 30
Duplicates: 0
Variable Stats / Values Freqs (% of Valid) Graph Missing
eval_date [Date]
min : 2011-04-30
med : 2017-08-31
max : 2019-12-31
range : 8y 8m 1d
27 distinct values 0 (0.0%)
devt_age [numeric]
Mean (sd) : 40.9 (25.1)
min ≤ med ≤ max:
4 ≤ 36 ≤ 108
IQR (CV) : 40 (0.6)
27 distinct values 0 (0.0%)
occurrence_number [character]
1. 1
2. 10
3. 100
4. 101
5. 102
6. 103
7. 104
8. 105
9. 106
10. 107
[ 6095 others ]
27 ( 0.0% )
27 ( 0.0% )
27 ( 0.0% )
27 ( 0.0% )
27 ( 0.0% )
27 ( 0.0% )
27 ( 0.0% )
27 ( 0.0% )
27 ( 0.0% )
27 ( 0.0% )
79478 ( 99.7% )
0 (0.0%)
coverage [character]
1. AL
2. WC
31449 ( 39.4% )
48299 ( 60.6% )
0 (0.0%)
member [character]
1. Member 9
2. Member 10
3. Member 4
4. Member 17
5. Member 6
6. Member 1
7. Member 2
8. Member 12
9. Member 18
10. Member 13
[ 8 others ]
10878 ( 13.6% )
10547 ( 13.2% )
9347 ( 11.7% )
8001 ( 10.0% )
7165 ( 9.0% )
5592 ( 7.0% )
4508 ( 5.7% )
3978 ( 5.0% )
3707 ( 4.6% )
3521 ( 4.4% )
12504 ( 15.7% )
0 (0.0%)
program_year [character]
1. 2011
2. 2012
3. 2013
4. 2014
5. 2015
6. 2016
7. 2017
8. 2018
9. 2019
13978 ( 17.5% )
12249 ( 15.4% )
11750 ( 14.7% )
11281 ( 14.1% )
11018 ( 13.8% )
9068 ( 11.4% )
5541 ( 6.9% )
3380 ( 4.2% )
1483 ( 1.9% )
0 (0.0%)
loss_date [Date]
min : 2011-01-02
med : 2014-02-28
max : 2019-12-31
range : 8y 11m 29d
2430 distinct values 0 (0.0%)
rept_date [Date]
min : 2011-01-04
med : 2014-03-11
max : 2019-12-31
range : 8y 11m 27d
2240 distinct values 0 (0.0%)
hire_date [Date]
min : 1973-09-01
med : 2011-01-31
max : 2019-11-15
range : 46y 2m 14d
1727 distinct values 33290 (41.7%)
report_lag [numeric]
Mean (sd) : 8.6 (40.2)
min ≤ med ≤ max:
0 ≤ 1 ≤ 1620
IQR (CV) : 3 (4.7)
166 distinct values 0 (0.0%)
report_lag_group [factor]
1. 0 Days
2. 1 to 3 Days
3. 3+ Days
18386 ( 23.1% )
37273 ( 46.7% )
24089 ( 30.2% )
0 (0.0%)
day_of_week [character]
1. Friday
2. Monday
3. Saturday
4. Sunday
5. Thursday
6. Tuesday
7. Wednesday
13428 ( 16.8% )
16559 ( 20.8% )
2604 ( 3.3% )
2745 ( 3.4% )
14644 ( 18.4% )
16062 ( 20.1% )
13706 ( 17.2% )
0 (0.0%)
claim_type [character]
1. WCMO
2. ALPD
3. WCIN
4. AUPD
5. ALBI
6. AUBI
7. WCIO
8. AUIO
9. AUNA
10. WCNA
[ 9 others ]
27910 ( 35.0% )
24365 ( 30.6% )
20122 ( 25.2% )
5172 ( 6.5% )
1354 ( 1.7% )
300 ( 0.4% )
235 ( 0.3% )
112 ( 0.1% )
55 ( 0.1% )
32 ( 0.0% )
91 ( 0.1% )
0 (0.0%)
claimant_state [character]
1. NY
2. IA
3. TX
4. CT
5. AL
6. CA
7. MD
8. HI
9. MO
10. NM
[ 34 others ]
13361 ( 16.8% )
10318 ( 13.0% )
9429 ( 11.8% )
9374 ( 11.8% )
7874 ( 9.9% )
6513 ( 8.2% )
6053 ( 7.6% )
4695 ( 5.9% )
3753 ( 4.7% )
2163 ( 2.7% )
6040 ( 7.6% )
175 (0.2%)
loss_state [character]
1. NY
2. TX
3. CT
4. IA
5. AL
6. CA
7. MD
8. HI
9. MO
10. NM
[ 32 others ]
12310 ( 15.4% )
9359 ( 11.7% )
9059 ( 11.4% )
8557 ( 10.7% )
7067 ( 8.9% )
6473 ( 8.1% )
5663 ( 7.1% )
4703 ( 5.9% )
4118 ( 5.2% )
2213 ( 2.8% )
10201 ( 12.8% )
25 (0.0%)
cause [character]
1. Burns
2. Caught In / Under / Betwe
3. Collisions - Multi-Vehicl
4. Cuts / Punctures
5. Miscellaneous
6. Motor Vehicle Accident
7. Repetitive Motion
8. Single Vehicle Accident
9. Slip / Trip / Fall
10. Strain / Overexertion
11. Struck By / Against
262 ( 0.3% )
2201 ( 2.8% )
14613 ( 18.3% )
1955 ( 2.5% )
3002 ( 3.8% )
1066 ( 1.3% )
731 ( 0.9% )
16792 ( 21.1% )
10980 ( 13.8% )
19498 ( 24.4% )
8648 ( 10.8% )
0 (0.0%)
department [character]
1. Drivers
2. Food Prep/Mfg
3. Inside Sales / Administra
4. Outside Sales
5. Warehouse
50634 ( 63.5% )
2630 ( 3.3% )
4744 ( 6.0% )
2048 ( 2.6% )
19647 ( 24.7% )
45 (0.1%)
tenure [numeric]
Mean (sd) : 7.4 (6.2)
min ≤ med ≤ max:
0 ≤ 5.8 ≤ 46.3
IQR (CV) : 6.6 (0.8)
11551 distinct values 33290 (41.7%)
tenure_group [factor]
1. Less than 1 Year
2. 1 to 3 Years
3. 3 to 5 Years
4. 5 to 10 Years
5. 10+ Years
6. (Missing)
2092 ( 2.6% )
8620 ( 10.8% )
9143 ( 11.5% )
15406 ( 19.3% )
11197 ( 14.0% )
33290 ( 41.7% )
0 (0.0%)
claimant_age [numeric]
Mean (sd) : 24.8 (20.2)
min ≤ med ≤ max:
0 ≤ 27 ≤ 117
IQR (CV) : 40 (0.8)
73 distinct values 1565 (2.0%)
claimant_age_group [factor]
1. Less than 18 Years Old
2. 18 to 21 Years Old
3. 22 to 30 Years Old
4. 30+ Years Old
5. (Missing)
26584 ( 33.3% )
2561 ( 3.2% )
14784 ( 18.5% )
34254 ( 43.0% )
1565 ( 2.0% )
0 (0.0%)
driver_age [numeric]
Mean (sd) : 38.6 (10.9)
min ≤ med ≤ max:
0 ≤ 38 ≤ 95
IQR (CV) : 16 (0.3)
64 distinct values 63489 (79.6%)
driver_age_group [factor]
1. Less than 18 Years Old
2. 18 to 21 Years Old
3. 22 to 30 Years Old
4. 30+ Years Old
5. (Missing)
125 ( 0.2% )
118 ( 0.1% )
4060 ( 5.1% )
11956 ( 15.0% )
63489 ( 79.6% )
0 (0.0%)
status [character]
1. C
2. I
3. O
4. R
71606 ( 89.8% )
335 ( 0.4% )
7288 ( 9.1% )
519 ( 0.7% )
0 (0.0%)
total_paid [numeric]
Mean (sd) : 6955.5 (34099)
min ≤ med ≤ max:
0 ≤ 897 ≤ 1161358
IQR (CV) : 3154 (4.9)
10119 distinct values 0 (0.0%)
total_incurred [numeric]
Mean (sd) : 8873.6 (42103.2)
min ≤ med ≤ max:
0 ≤ 1077.5 ≤ 1166036
IQR (CV) : 3526 (4.7)
9606 distinct values 0 (0.0%)
count [numeric]
Min : 0
Mean : 1
Max : 1
0 : 335 ( 0.4% )
1 : 79413 ( 99.6% )
0 (0.0%)
open_count [numeric]
Min : 0
Mean : 0.1
Max : 1
0 : 71941 ( 90.2% )
1 : 7807 ( 9.8% )
0 (0.0%)
close_count [numeric]
Min : 0
Mean : 0.9
Max : 1
0 : 8142 ( 10.2% )
1 : 71606 ( 89.8% )
0 (0.0%)
incurred_group [factor]
1. $0-$50K
2. $50K-$100K
3. $100K-$250K
4. $250K-$500K
5. $500K+
76789 ( 96.3% )
1557 ( 2.0% )
1021 ( 1.3% )
281 ( 0.4% )
100 ( 0.1% )
0 (0.0%)

Generated by summarytools 1.0.1 (R version 4.4.1)
2024-10-17

Worker’s Compensation

Distribution of Claims

library(fplot)
fplot::plot_distr(wc_dat$total_incurred)

plot_distr(~ total_incurred | cause, wc_dat, cumul = TRUE)

plot_lines(
  total_incurred ~ program_year,
  losses
)