Apply Labels
apply_labels( data, dict, from = "value", to = "value_label", by = "variable", names_from = "variable", names_to = "variable_label", dataset_name = NULL, ... )
data | dataset to apply labeling on. |
---|---|
dict | dictionary to use for application of labeling. |
from | a column name or position defining words or keys to be replaced |
to | a column name or position defining replacement values |
by | character or integer - which column in |
names_from | column name or position defining where to match names from. Defaults to "variable". |
names_to | column name or position defining replacements for
|
dataset_name | (optional) name of dataset to filter |
... | Passed to |
a labelled, display friendly tibble
dictionary <- data.frame( var = c(rep("x1", 2), rep("x2", 3), rep("x3", 5)), var_lab = c(rep("Column 1", 2), rep("Column 2", 3), rep("Column 3", 5)), val = c(c(TRUE, FALSE), c(1:3), letters[1:5]), val_lab = c(c("YES", "NO"), paste0("Group ", c(1:3)), paste0("Area ", LETTERS[1:5])) ) dat <- data.frame( "x1" = rep(c(TRUE, FALSE), 15), "x2" = rep(c(1:3), 10), "x3" = rep(letters[1:5], 6) ) apply_labels(dat, dictionary, from = "val", to = "val_lab", by = "var", names_from = "var", names_to = "var_lab")#> Column 1 Column 2 Column 3 #> 1 YES Group 1 Area A #> 2 NO Group 2 Area B #> 3 YES Group 3 Area C #> 4 NO Group 1 Area D #> 5 YES Group 2 Area E #> 6 NO Group 3 Area A #> 7 YES Group 1 Area B #> 8 NO Group 2 Area C #> 9 YES Group 3 Area D #> 10 NO Group 1 Area E #> 11 YES Group 2 Area A #> 12 NO Group 3 Area B #> 13 YES Group 1 Area C #> 14 NO Group 2 Area D #> 15 YES Group 3 Area E #> 16 NO Group 1 Area A #> 17 YES Group 2 Area B #> 18 NO Group 3 Area C #> 19 YES Group 1 Area D #> 20 NO Group 2 Area E #> 21 YES Group 3 Area A #> 22 NO Group 1 Area B #> 23 YES Group 2 Area C #> 24 NO Group 3 Area D #> 25 YES Group 1 Area E #> 26 NO Group 2 Area A #> 27 YES Group 3 Area B #> 28 NO Group 1 Area C #> 29 YES Group 2 Area D #> 30 NO Group 3 Area E