
Contents

 Windows development environment
 Overview

 Workflow & performance tips
 Developer stories
 Popular tutorials
 Mac to Windows guide
 Keyboard shortcuts

 Development paths
 Get started with JavaScript

 Overview
 Get started with NodeJS

 Overview
 Install on WSL
 Install on Windows
 Tutorial for beginners

 Get started with React
 Overview
 Install on WSL
 Install on Windows
 Install React Native for Windows
 Install React Native for Android
 Install NextJS
 Install Gatsby
 Tutorial for beginners

 Get started with Vue
 Overview
 Install on WSL
 Install on Windows
 Install NuxtJS

 Tutorial for beginners
 Get started with Python

 Overview
 Get started for beginners
 Get started with web dev
 Get started with automation
 FAQs

 Get started with Android
 Overview
 Get started with Native Android
 Get started with Cross-platform

 Xamarin Native
 Xamarin Forms
 React Native
 PWA (Ionic, PhoneGap, Cordova)

 Defender settings to improve performance
 Test on device or emulator

 Get started with C and C++
 Get started with C#
 Get started with Docker
 Get started with Powershell
 Get started with databases on WSL
 Get started with Rust

 Contents
 Overview of developing on Windows with Rust
 Set up your dev environment
 Rust for Windows
 RSS reader tutorial (Rust for Windows)

 Tools and platforms
 Windows Subsystem for Linux
 Windows Terminal
 Windows Package Manager

file:///T:/2ybq/1zcw/windows/python/index.html#body
file:///T:/2ybq/1zcw/windows/python/faqs.html#body
https://docs.microsoft.com/cpp/
https://docs.microsoft.com/dotnet/csharp/
https://docs.microsoft.com/powershell/
https://docs.microsoft.com/windows/wsl/tutorials/wsl-database
file:///T:/2ybq/1zcw/windows/dev-environment/rust/index.html#body
https://docs.microsoft.com/windows/wsl/
https://docs.microsoft.com/windows/terminal/

 Overview
 Use the winget tool

 Overview
 export command
 features command
 hash command
 help command
 import command
 install command
 list command
 search command
 settings command
 show command
 source command
 uninstall command
 upgrade command
 validate command

 Submit packages
 Overview
 Create your package manifest
 Submit your manifest to the repository
 Validation process
 Troubleshooting submissions
 Binary validation errors
 Repository policies
 Repository policies change history

 PowerToys
 Overview

 About PowerToys
 Install PowerToys
 Run in admin mode

 Awake

 Color Picker
 FancyZones
 File Explorer add-ons
 Image Resizer
 Keyboard Manager
 PowerRename
 PowerToys Run
 Shortcut Guide
 Video Conference Mute

 VS Code
 Visual Studio
 Azure
 .NET

https://code.visualstudio.com/docs
https://docs.microsoft.com/visualstudio/windows/
https://docs.microsoft.com/azure/
https://docs.microsoft.com/dotnet/

Set up your development environment on Windows
 6/30/2021 • 3 minutes to read • Edit Online

 Development paths

Windows invites you to code as you are. Use whatever coding language or framework you prefer - whether

developing with tools on Windows or with Linux tools on the Windows Subsystem for Linux, this guide will help

you get set up and install what you need to start coding, debugging, and accessing services to put your work

into production.

Get star ted with JavaScr ipt

Get started with JavaScript by setting up your development environment on Windows or Windows Subsystem

for Linux and install Node.js, React, Vue, Express, Gatsby, Next.js, or Nuxt.js.

Get star ted with Python

Install Python and get your development environment setup on Windows or Windows Subsystem for Linux.

Get star ted with Android

Install Android Studio, or choose a cross-platform solution like Xamarin, React, or Cordova, and get your

development environment setup on Windows.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/index.md
file:///T:/2ybq/1zcw/windows/python/index.html#body
file:///T:/2ybq/1zcw/windows/python/index.html#body
https://docs.microsoft.com/en-us/windows/android
https://docs.microsoft.com/en-us/windows/android

Get star ted with Windows Desktop

Get started building desktop apps for Windows using the Windows App SDK, UWP, Win32, WPF, Windows

Forms, or updating and deploying existing desktop apps with MSIX and XAML Islands.

Get star ted with C++ and C

Get started with C++, C, and assembly to develop apps, services, and tools.

Get star ted with C#

Get started building apps using C# and .NET Core.

Get star ted with Docker Desktop for Windows

Create remote development containers with support from Visual Studio, VS Code, .NET, Windows Subsystem for

Linux, or a variety of Azure services.

https://docs.microsoft.com/en-us/windows/apps/index
https://docs.microsoft.com/en-us/windows/apps/index
https://docs.microsoft.com/en-us/cpp/
https://docs.microsoft.com/en-us/cpp/
https://docs.microsoft.com/en-us/dotnet/csharp/
https://docs.microsoft.com/en-us/dotnet/csharp/

 Tools and platforms

Get star ted with PowerShell

Get started with cross-platform task automation and configuration management using PowerShell, a command-

line shell and scripting language.

Get star ted with Rust

Get started programming with Rust—including how to set up Rust for Windows by consuming the windows

crate.

Windows Subsystem for L inux

Use your favorite Linux distribution fully integrated with Windows (no more need for dual-boot).

Install WSL

https://docs.microsoft.com/en-us/powershell/
https://docs.microsoft.com/en-us/powershell/
file:///T:/2ybq/1zcw/windows/dev-environment/rust/index.html#body
file:///T:/2ybq/1zcw/windows/dev-environment/rust/index.html#body
https://docs.microsoft.com/en-us/windows/wsl/
https://docs.microsoft.com/en-us/windows/wsl/
https://docs.microsoft.com/en-us/windows/wsl/install-win10

Windows Terminal

Customize your terminal environment to work with multiple command line shells.

Install Terminal

Windows Package Manager

Use the winget.exe client, a comprehensive package manager, with your command line to install applications on

Windows.

Install Windows Package Manager (public preview)

Microsoft PowerToys

Tune and streamline your Windows experience for greater productivity with this set of power user utilities.

Install PowerToys

https://docs.microsoft.com/en-us/windows/terminal/
https://docs.microsoft.com/en-us/windows/terminal/
https://www.microsoft.com/p/windows-terminal/9n0dx20hk701?rtc=1&activetab=pivot:overviewtab

VS Code

A lightweight source code editor with built-in support for JavaScript, TypeScript, Node.js, a rich ecosystem of

extensions (C++, C#, Java, Python, PHP, Go) and runtimes (such as .NET and Unity).

Install VS Code

Visual Studio

An integrated development environment that you can use to edit, debug, build code, and publish apps, including

compilers, intellisense code completion, and many more features.

Install Visual Studio

Azure

A complete cloud platform to host your existing apps and streamline new development. Azure services integrate

everything you need to develop, test, deploy, and manage your apps.

Set up an Azure account

https://code.visualstudio.com/docs
https://code.visualstudio.com/docs
https://code.visualstudio.com/download
https://docs.microsoft.com/en-us/visualstudio/windows/
https://docs.microsoft.com/en-us/visualstudio/windows/
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio
https://docs.microsoft.com/en-us/azure/guides/developer/azure-developer-guide
https://docs.microsoft.com/en-us/azure/guides/developer/azure-developer-guide
https://azure.microsoft.com/free/

 Run Windows and Linux

 Transitioning between Mac and Windows

.NET

An open source development platform with tools and libraries for building any type of app, including web,

mobile, desktop, gaming, IoT, cloud, and microservices.

Install .NET

Windows Subsystem for Linux (WSL) allows developers to run a Linux operating system right alongside

Windows. Both share the same hard drive (and can access each other ’s files), the clipboard supports copy-and-

paste between the two naturally, there's no need for dual-booting. WSL enables you to use BASH and will

provide the kind of environment most familiar to Mac users.

Learn more in the WSL docs or via WSL videos on Channel 9.

You can also use Windows Terminal to open all of your favorite command line tools in the same window with

multiple tabs, or in multiple panes, whether that's PowerShell, Windows Command Prompt, Ubuntu, Debian,

Azure CLI, Oh-my-Zsh, Git Bash, or all of the above.

Learn more in the Windows Terminal docs or via Windows Terminal videos on Channel 9.

Check out our guide to transitioning between between a Mac and Windows (or Windows Subsystem for Linux)

development environment. It can help you map the difference between:

Keyboard shortcuts

Trackpad shortcuts

Terminal and shell tools

Apps and utilities

https://dotnet.microsoft.com/
https://docs.microsoft.com/en-us/dotnet/standard/get-started/
https://dotnet.microsoft.com/download
https://docs.microsoft.com/en-us/windows/wsl
https://channel9.msdn.com/Search?term=wsl&lang-en=true
https://channel9.msdn.com/Blogs/One-Dev-Minute/What-can-I-do-with-WSL--One-Dev-Question/player?format=ny&nocookie=true
https://docs.microsoft.com/en-us/windows/terminal
https://channel9.msdn.com/Search?term=windows%20terminal&lang-en=true
https://channel9.msdn.com/Blogs/One-Dev-Minute/What-are-the-main-features-of-the-new-Terminal--One-Dev-Question/player?format=ny&nocookie=true

 Additional resources
Tips for improving your workflow

Stories from developers who have switched from Mac to Windows

Popular tutorials, courses, and code samples

Microsoft's Game Stack documentation

https://docs.microsoft.com/en-us/gaming/

Tips for improving performance and development
workflows

 6/30/2021 • 3 minutes to read • Edit Online

NOTE

 Use shortcuts to open a project in VS Code or Windows File Explorer

 Use the Credential Manager to your streamline authentication
process

We've gathered a few tips that we hope will help to make your workflow more efficient and enjoyable. Do you

have additional tips to share? File a pull request, using the "Edit" button above, or an issue, using the "Feedback"

button below and we may add it to the list.

If you are experiencing any performance issues related to developing on Windows 10, such as:

Dev tools (e.g. compilers, linkers, etc.) running slower on Windows than expected.

Runtime platforms (e.g. node, .NET, Python) running slower on Windows than other platforms.

Your apps experiencing file IO/networking/process-creation related perf issues.

Please let us know by filing an issue in the Windows Developer (WinDev) Issues repo!

You can launch VS Code from your command line into the project that you have open by using the command:

code . or open your project directory from the command line with Windows File Explorer using

explorer.exe . from Windows or your WSL distribution. You may need to add the VS Code executable to your

PATH environment variable if this doesn't work by default. Learn more about Launching from the Command

Line.

If you're using Git for version control and collaboration, you can streamline your authentication process by

setting up Git Credential Manager to store your tokens in the Windows Credential Manager. We also

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/tips.md
https://github.com/microsoft/WinDev
https://code.visualstudio.com/docs/editor/command-line#_launching-from-command-line
https://docs.microsoft.com/en-us/windows/wsl/tutorials/wsl-git#git-credential-manager-setup

 Use WSL for testing your production pipeline before deploying to the
cloud

 Improve performance speed for WSL by not crossing over file systems

 Improve build speeds by adding Windows Defender exclusions

 Launch all your command lines in Windows Terminal at once

recommend adding a .gitignore file to your project.

The Windows Subsystem for Linux lets developers run a GNU/Linux environment -- including most command-

line tools, utilities, and applications -- directly on Windows, unmodified, without the overhead of a traditional

virtual machine or dualboot setup.

WSL targets a developer audience with the intent to be used as part of an inner development loop. Let's say that

Sam is creating a CI/CD pipeline (Continuous Integration & Continuous Delivery) and wants to test it first on a

local machine (laptop) before deploying it to the cloud. Sam can enable WSL (& WSL 2 to improve speed and

performance), and then use a genuine Linux Ubuntu instance locally (on the laptop) with whatever Bash

commands and tools they prefer. Once the development pipeline is verified locally, Sam can then push that

CI/CD pipeline up to the cloud (ie Azure) by making it into a Docker container and pushing the container to a

cloud instance where it runs on a production-ready Ubuntu VM.

For more ways to use WSL, check out this Tabs vs Spaces episode on WSL 2.

If you're working with both Windows and Windows Subsystem for Linux, you have two file systems installed:

NTFS (Windows) and WSL (your Linux distro). For fast performance, ensure that your project files are stored in

the same system as the tools you're using. Learn more about choosing the correct file system for faster

performance.

You can improve your build speed by updating your Windows Defender settings to add exclusions for project

folders or file types that you trust enough to avoid scanning for security threats. Learn more about how to

Update Windows Defender settings to improve performance.

https://docs.microsoft.com/en-us/windows/wsl/tutorials/wsl-git#adding-a-git-ignore-file
https://channel9.msdn.com/Shows/Tabs-vs-Spaces/WSL2-Code-faster-on-the-Windows-Subsystem-for-Linux
https://docs.microsoft.com/en-us/windows/wsl/compare-versions#use-the-linux-file-system-for-faster-performance

 Share your tips

wt -p "Command Prompt" `; split-pane -p "Windows PowerShell" `; split-pane -H wsl.exe

You can launch multiple command lines, like PowerShell, Ubuntu, and Azure CLI, all into a single window

with multiple panes using Windows Terminal Command Line Arguments. After installing Windows

Terminal, WSL/Ubuntu, and Azure CLI, enter this command in PowerShell to open a new multi-pane

window with all three:

Do you have tips for to help other developers using Windows improve their workflow? Please submit a pull

request adding your tip to the page or file an issue if you'd like use to add a tip on a particular topic.

Do you have performance-related issues that you would like us to address? File it in the new WinDev Issues

repo.

Thank you developers. We're listening and trying to improve your experience!

https://docs.microsoft.com/en-us/windows/terminal/command-line-arguments?tabs=powershell#multiple-panes
https://docs.microsoft.com/en-us/windows/terminal/get-started
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://github.com/MicrosoftDocs/windows-uwp/edit/docs/hub/dev-environment/tips.md
https://github.com/MicrosoftDocs/windows-uwp/issues/new?title=&body=%250A%250A%255BEnter%20feedback%20here%255D%250A%250A%250A---%250A%2523%2523%2523%2523%20Document%20Details%250A%250A%25E2%259A%25A0%20*Do%20not%20edit%20this%20section.%20It%20is%20required%20for%20docs.microsoft.com%20%25E2%259E%259F%20GitHub%20issue%20linking.*%250A%250A*%20ID%253A%207779352b-7b4e-dad8-7c1b-b9aba2c5e561%250A*%20Version%20Independent%20ID%253A%20a5b81b80-87a1-b6e2-8936-baf6c1a0b9c5%250A*%20Content%253A%20%255BSet%20up%20your%20Windows%2010%20development%20environment%255D(https%253A%252F%252Fdocs.microsoft.com%252Fen-us%252Fwindows%252Fdev-environment%252Ftips)%250A*%20Content%20Source%253A%20%255Bhub%252Fdev-environment%252Ftips.md%255D(https%253A%252F%252Fgithub.com%252FMicrosoftDocs%252Fwindows-uwp%252Fblob%252Fdocs%252Fhub%252Fdev-environment%252Ftips.md)%250A*%20Product%253A%20**dev-environment**%250A*%20Technology%253A%20**windows-nodejs**
https://github.com/microsoft/windev

Stories from developers who have switched from
Mac to Windows

 3/6/2021 • 2 minutes to read • Edit Online

We thought it may be helpful to hear from other developers about their experiences switching between a Mac

and Windows development environment. Most found the process reasonably simple, appreciated that they

could still use their favorite Linux and open source tools, while also having integrated access to Windows

productivity tools, like Microsoft Office, Outlook, and Teams. Here are a few articles and blog entries that we

found:

Ken Wang, "Think Different — Software Developer Switching from Mac to Windows"

Owen Williams, "The state of switching to Windows from Mac in 2019"

August Lilleaas, "Why I ditched macOS, Linux, and chose Windows for development work"

Brent Rose, "What Happened When I Switched From Mac to Windows"

Jack Franklin, "Using Windows 10 and WSL for frontend web development"

Aaron Schlesinger, "Coming from a Mac to Windows & WSL 2"

David Heinemeier Hansson, "Back to windows after twenty years"

Ray Elenteny, "Why I returned to Windows"

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/dev-stories.md
https://www.microsoft.com/microsoft-365/products-apps-services
https://www.microsoft.com/microsoft-365/outlook/email-and-calendar-software-microsoft-outlook
https://www.microsoft.com/microsoft-365/microsoft-teams/group-chat-software
https://medium.com/@kenwang_57215/software-developer-switching-from-mac-to-windows-66773d331910
https://char.gd/blog/2019/the-state-of-switching-to-windows-from-mac-in-2019
https://augustl.com/blog/2019/choosing_windows_over_macos_linux/
https://www.wired.com/story/rant-switching-from-mac-to-windows/
https://www.jackfranklin.co.uk/blog/frontend-development-with-windows-10/
https://arschles.com/blog/coming-from-a-mac-to-windows-wsl-2/
https://m.signalvnoise.com/back-to-windows-after-twenty-years/
https://dzone.com/articles/why-i-returned-to-windows

Popular tutorials, courses, and code samples
 5/10/2021 • 2 minutes to read • Edit Online

 Create a database

 Build an Android app

 Create a cross-platform app

 Get started with WSL

 Build a web app or call an API

We've listed a few tutorials, course, and code samples below to help you get started on some common

development tasks and scenarios.

Create a MongoDB app with React and Azure Cosmos DB

Deploy a Python (Django) web app with PostgreSQL in Azure App Service

Build an Android dual-screen app with drag and drop capabilities

Build a to-do list cross-platform app with Xamarin.Forms

Build a Xamarin.Android app that utilizes Google Play Services to demo the Google Maps API

An introductory to Windows Subsystem for Linux

Build your first ASP.Net Core web app with Blazor

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/tutorials.md
https://docs.microsoft.com/en-us/azure/cosmos-db/tutorial-develop-mongodb-react
https://docs.microsoft.com/en-us/azure/app-service/containers/tutorial-python-postgresql-app?tabs=bash
https://docs.microsoft.com/en-us/dual-screen/android/samples
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/todo/
https://docs.microsoft.com/en-us/samples/xamarin/xamarin-forms-samples/todo/
https://docs.microsoft.com/en-us/learn/modules/get-started-with-windows-subsystem-for-linux/
https://docs.microsoft.com/en-us/aspnet/core/tutorials/build-your-first-blazor-app

 Build a console app

 Create a microservice

 Additional resources

Call an ASP.NET Core Web API from a WPF application using Azure AD V2

Build a Java app with Microsoft Graph

Create and deploy a cloud-native ASP.NET Core microservice

Explore free online courses on Microsoft Learn

Explore online courses from Pluralsight

https://docs.microsoft.com/en-us/samples/azure-samples/active-directory-dotnet-native-aspnetcore-v2/calling-an-aspnet-core-web-api-from-a-wpf-application-using-azure-ad-v2/
https://docs.microsoft.com/en-us/graph/tutorials/java
https://docs.microsoft.com/en-us/learn/modules/microservices-aspnet-core/
https://docs.microsoft.com/en-us/learn/browse/
https://www.pluralsight.com/browse/software-development

Guide for changing your dev environment from
Mac to Windows

 5/10/2021 • 4 minutes to read • Edit Online

 Keyboard shortcuts

O P ERAT IO N M A C W IN DO W S

Copy Command+C Ctrl+C

Cut Command+X Ctrl+X

Paste Command+V Ctrl+V

Undo Command+Z Ctrl+Z

Save Command+S Ctrl+S

Open Command+O Ctrl+O

Lock computer Command+Control+Q WindowsKey+L

Show desktop Command+F3 WindowsKey+D

Open file browser Command+N WindowsKey+E

Minimize windows Command+M WindowsKey+M

Search Command+Space WindowsKey

Close active window Command+W Control+W

Switch current task Command+Tab Alt+Tab

Maximize a window to full screen Control+Command+F WindowsKey+Up

Save screen (Screenshot) Command+Shift+3 WindowsKey+Shift+S

Save window Command+Shift+4 WindowsKey+Shift+S

View item information or properties Command+I Alt+Enter

The following tips and control equivalents should help you in your transition between a Mac and Windows (or

WSL/Linux) development environment.

For app development, the nearest equivalent to Xcode would be Visual Studio. There is also a version of Visual

Studio for Mac, if you ever feel the need to go back. For cross-platform source code editing (and a huge number

of plug-ins) Visual Studio Code is the most popular choice.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/mac-to-windows.md
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com/vs/mac/
https://code.visualstudio.com/?wt.mc_id=DX_841432

Select all items Command+A Ctrl+A

Select more than one item in a list
(noncontiguous)

Command, then click each item Control, then click each item

Type special characters Option+ character key Alt+ character key

O P ERAT IO N M A C W IN DO W S

 Trackpad shortcuts

O P ERAT IO N M A C W IN DO W S

Scroll Two finger vertical swipe Two finger vertical swipe

Zoom Two finger pinch in and out Two finger pinch in and out

Swipe back and forward between
views

Two finger sideways swipe Two finger sideways swipe

Switch virtual workspaces Four fingers sideways swipe Four fingers sideways swipe

Display currently open apps Four fingers upward swipe Three fingers upward swipe

Switch between apps N/A Slow three finger sideways swipe

Go to desktop Spread out four fingers Three finger swipe downwards

Open Cortana / Action center Two finger slide from right Three finger tap

Open extra information Three finger tap N/A

Show launchpad / start an app Pinch with four fingers Tap with four fingers

 Command-line shells and terminals

 Windows shells

Note: Some of these shortcuts require a "Precision Trackpad", such as the trackpad on Surface devices and some

other third party laptops.

Note: Trackpad options are configurable on both platforms.

Windows supports several command-line shells and terminals which sometimes work a little differently to the

Mac's BASH shell and terminal emulator apps like Terminal and iTerm.

Windows has two primary command-line shells:

1. PowerShell - PowerShell is a cross-platform task automation and configuration management

framework, consisting of a command-line shell and scripting language built on .NET. Using PowerShell,

administrators, developers, and power-users can rapidly control and automate tasks that manage

complex processes and various aspects of the environment and operating system upon which it is run.

PowerShell is fully open-source, and because it is cross-platform, also available for Mac and Linux.

Mac and L inux BASH shell users : PowerShell also supports many command-aliases that you are

https://docs.microsoft.com/en-us/powershell/scripting/overview
https://github.com/powershell/powershell
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell

 Linux shells

 Windows Terminals

already familiar with. For example:

List the contents of the current directory, using: ls

Move files with: mv

Move to a new directory with: cd <path>

Some commands and arguments are different in PowerShell vs. BASH. Learn more by entering: get-help

in PowerShell or checkout the compatibility aliases in the docs.

To run PowerShell as an Administrator, enter "PowerShell" in your Windows start menu, then select "Run

as Administrator."

2. Windows Command Line (Cmd) : Windows still ships the traditional Command Prompt (and Console

– see below), providing compatibility with current and legacy MS-DOS-compatible commands and batch

files. Cmd is useful when running existing/older batch files or command-line operations, but in general,

users are recommended to learn and use PowerShell since Cmd is now in maintenance, and will not be

receiving any improvements or new features in the future.

Windows Subsystem for Linux (WSL) can now be installed to support running a Linux shell within Windows.

This means that you can run bash, with whichever specific Linux distribution you choose, integrated right inside

Windows. Using WSL will provide the kind of environment most familiar to Mac users. For example, you will ls

to list the files in a current directory, not dir as you would with the traditional Windows Cmd Shell. To learn

about installing and using WSL, see the Windows Subsystem for Linux Installation Guide for Windows 10. Linux

distributions that can be installed on Windows with WSL include:

1. Ubuntu 20.04 LTS

2. Kali Linux

3. Debian GNU/Linux

4. openSUSE Leap 15.1

5. SUSE Linux Enterprise Server 15 SP1

Just to name a few. Find more in the WSL install docs and install them directly from the Microsoft Store.

In addition to many 3rd party offerings, Microsoft provides two "terminals" – GUI applications that provide

access to command-line shells and applications.

1. Windows Terminal : Windows Terminal is a new, modern, highly configurable command-line terminal

application that provides very high performance, low-latency command-line user experience, multiple

tabs, split window panes, custom themes and styles, multiple "profiles" for different shells or command-

line apps, and considerable opportunities for you to configure and personalize many aspects of your

command-line user experience.

You can use Windows Terminal to open tabs connected to PowerShell, WSL shells (like Ubuntu or Debian),

the traditional Windows Command Prompt, or any other command-line app (e.g. SSH, Azure CLI, Git

Bash).

2. Console: On Mac and Linux, users usually start their preferred terminal application which then creates

and connects to the user's default shell (e.g. BASH).

However, due to a quirk of history, Windows users traditionally start their shell, and Windows

automatically starts and connects a GUI Console app.

While one can still launch shells directly and use the legacy Windows Console, it's highly recommended

that users instead install and use Windows Terminal to experience the best, fastest, most productive

https://docs.microsoft.com/en-us/powershell/scripting/learn/ps101/02-help-system
https://docs.microsoft.com/en-us/powershell/scripting/samples/appendix-1---compatibility-aliases
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://www.microsoft.com/store/apps/9n6svws3rx71
https://www.microsoft.com/store/apps/9PKR34TNCV07
https://www.microsoft.com/store/apps/9MSVKQC78PK6
https://www.microsoft.com/store/apps/9NJFZK00FGKV
https://www.microsoft.com/store/apps/9PN498VPMF3Z
https://docs.microsoft.com/en-us/windows/wsl/install-win10#install-your-linux-distribution-of-choice
https://www.microsoft.com/search/shop/apps?q=linux&category=Developer+tools
https://docs.microsoft.com/en-us/windows/terminal/
https://docs.microsoft.com/en-us/windows/console/

 Apps and utilities

A P P M A C W IN DO W S

Settings and Preferences System Preferences Settings

Task manager Activity Monitor Task Manager

Disk formatting Disk Utility Disk Management

Text editing TextEdit Notepad

Event viewing Console Event Viewer

Find files/apps Command+Space Windows key

command-line experience.

Guide for changing your dev environment from
Mac to Windows

 5/10/2021 • 4 minutes to read • Edit Online

 Keyboard shortcuts

O P ERAT IO N M A C W IN DO W S

Copy Command+C Ctrl+C

Cut Command+X Ctrl+X

Paste Command+V Ctrl+V

Undo Command+Z Ctrl+Z

Save Command+S Ctrl+S

Open Command+O Ctrl+O

Lock computer Command+Control+Q WindowsKey+L

Show desktop Command+F3 WindowsKey+D

Open file browser Command+N WindowsKey+E

Minimize windows Command+M WindowsKey+M

Search Command+Space WindowsKey

Close active window Command+W Control+W

Switch current task Command+Tab Alt+Tab

Maximize a window to full screen Control+Command+F WindowsKey+Up

Save screen (Screenshot) Command+Shift+3 WindowsKey+Shift+S

Save window Command+Shift+4 WindowsKey+Shift+S

View item information or properties Command+I Alt+Enter

The following tips and control equivalents should help you in your transition between a Mac and Windows (or

WSL/Linux) development environment.

For app development, the nearest equivalent to Xcode would be Visual Studio. There is also a version of Visual

Studio for Mac, if you ever feel the need to go back. For cross-platform source code editing (and a huge number

of plug-ins) Visual Studio Code is the most popular choice.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/mac-to-windows.md
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com/vs/mac/
https://code.visualstudio.com/?wt.mc_id=DX_841432

Select all items Command+A Ctrl+A

Select more than one item in a list
(noncontiguous)

Command, then click each item Control, then click each item

Type special characters Option+ character key Alt+ character key

O P ERAT IO N M A C W IN DO W S

 Trackpad shortcuts

O P ERAT IO N M A C W IN DO W S

Scroll Two finger vertical swipe Two finger vertical swipe

Zoom Two finger pinch in and out Two finger pinch in and out

Swipe back and forward between
views

Two finger sideways swipe Two finger sideways swipe

Switch virtual workspaces Four fingers sideways swipe Four fingers sideways swipe

Display currently open apps Four fingers upward swipe Three fingers upward swipe

Switch between apps N/A Slow three finger sideways swipe

Go to desktop Spread out four fingers Three finger swipe downwards

Open Cortana / Action center Two finger slide from right Three finger tap

Open extra information Three finger tap N/A

Show launchpad / start an app Pinch with four fingers Tap with four fingers

 Command-line shells and terminals

 Windows shells

Note: Some of these shortcuts require a "Precision Trackpad", such as the trackpad on Surface devices and some

other third party laptops.

Note: Trackpad options are configurable on both platforms.

Windows supports several command-line shells and terminals which sometimes work a little differently to the

Mac's BASH shell and terminal emulator apps like Terminal and iTerm.

Windows has two primary command-line shells:

1. PowerShell - PowerShell is a cross-platform task automation and configuration management

framework, consisting of a command-line shell and scripting language built on .NET. Using PowerShell,

administrators, developers, and power-users can rapidly control and automate tasks that manage

complex processes and various aspects of the environment and operating system upon which it is run.

PowerShell is fully open-source, and because it is cross-platform, also available for Mac and Linux.

Mac and L inux BASH shell users : PowerShell also supports many command-aliases that you are

https://docs.microsoft.com/en-us/powershell/scripting/overview
https://github.com/powershell/powershell
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell

 Linux shells

 Windows Terminals

already familiar with. For example:

List the contents of the current directory, using: ls

Move files with: mv

Move to a new directory with: cd <path>

Some commands and arguments are different in PowerShell vs. BASH. Learn more by entering: get-help

in PowerShell or checkout the compatibility aliases in the docs.

To run PowerShell as an Administrator, enter "PowerShell" in your Windows start menu, then select "Run

as Administrator."

2. Windows Command Line (Cmd) : Windows still ships the traditional Command Prompt (and Console

– see below), providing compatibility with current and legacy MS-DOS-compatible commands and batch

files. Cmd is useful when running existing/older batch files or command-line operations, but in general,

users are recommended to learn and use PowerShell since Cmd is now in maintenance, and will not be

receiving any improvements or new features in the future.

Windows Subsystem for Linux (WSL) can now be installed to support running a Linux shell within Windows.

This means that you can run bash, with whichever specific Linux distribution you choose, integrated right inside

Windows. Using WSL will provide the kind of environment most familiar to Mac users. For example, you will ls

to list the files in a current directory, not dir as you would with the traditional Windows Cmd Shell. To learn

about installing and using WSL, see the Windows Subsystem for Linux Installation Guide for Windows 10. Linux

distributions that can be installed on Windows with WSL include:

1. Ubuntu 20.04 LTS

2. Kali Linux

3. Debian GNU/Linux

4. openSUSE Leap 15.1

5. SUSE Linux Enterprise Server 15 SP1

Just to name a few. Find more in the WSL install docs and install them directly from the Microsoft Store.

In addition to many 3rd party offerings, Microsoft provides two "terminals" – GUI applications that provide

access to command-line shells and applications.

1. Windows Terminal : Windows Terminal is a new, modern, highly configurable command-line terminal

application that provides very high performance, low-latency command-line user experience, multiple

tabs, split window panes, custom themes and styles, multiple "profiles" for different shells or command-

line apps, and considerable opportunities for you to configure and personalize many aspects of your

command-line user experience.

You can use Windows Terminal to open tabs connected to PowerShell, WSL shells (like Ubuntu or Debian),

the traditional Windows Command Prompt, or any other command-line app (e.g. SSH, Azure CLI, Git

Bash).

2. Console: On Mac and Linux, users usually start their preferred terminal application which then creates

and connects to the user's default shell (e.g. BASH).

However, due to a quirk of history, Windows users traditionally start their shell, and Windows

automatically starts and connects a GUI Console app.

While one can still launch shells directly and use the legacy Windows Console, it's highly recommended

that users instead install and use Windows Terminal to experience the best, fastest, most productive

https://docs.microsoft.com/en-us/powershell/scripting/learn/ps101/02-help-system
https://docs.microsoft.com/en-us/powershell/scripting/samples/appendix-1---compatibility-aliases
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://www.microsoft.com/store/apps/9n6svws3rx71
https://www.microsoft.com/store/apps/9PKR34TNCV07
https://www.microsoft.com/store/apps/9MSVKQC78PK6
https://www.microsoft.com/store/apps/9NJFZK00FGKV
https://www.microsoft.com/store/apps/9PN498VPMF3Z
https://docs.microsoft.com/en-us/windows/wsl/install-win10#install-your-linux-distribution-of-choice
https://www.microsoft.com/search/shop/apps?q=linux&category=Developer+tools
https://docs.microsoft.com/en-us/windows/terminal/
https://docs.microsoft.com/en-us/windows/console/

 Apps and utilities

A P P M A C W IN DO W S

Settings and Preferences System Preferences Settings

Task manager Activity Monitor Task Manager

Disk formatting Disk Utility Disk Management

Text editing TextEdit Notepad

Event viewing Console Event Viewer

Find files/apps Command+Space Windows key

command-line experience.

Install JavaScript frameworks on Windows
 6/4/2021 • 2 minutes to read • Edit Online

 Choose a JavaScript framework to install and set up your dev
environment

This guide will help you get started using JavaScript frameworks on Windows, including Node.js, React.js, Vue.js,

Next.js, Nuxt.js, or Gatsby.

Node.js over view

Learn about what you can do with Node.js and how to set up a Node.js development environment.

Install on Windows

Install on WSL

Try a beginner-level tutorial

React over view

Learn about what you can do with React and how to set up a React development environment.

Install on Windows for building web apps

Install on WSL for building web apps

Install on Windows for building desktop apps

Install on Windows for building Android mobile apps

Try a beginner-level tutorial

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/javascript/index.md

Vue.js over view

Learn about what you can do with Vue.js and how to set up a Vue.js development environment.

Install on Windows

Install on WSL

Try a beginner-level tutorial

Install Next.js on WSL

Next.js is a framework for creating server-rendered JavaScript apps based on React.js, Node.js, Webpack and

Babel.js. Learn how to install it on the Windows Subsystem for Linux.

Install Nuxt.js on WSL

Nuxt.js is a framework for creating server-rendered JavaScript apps based on Vue.js, Node.js, Webpack and

Babel.js. Learn how to install it on the Windows Subsystem for Linux.

Install Gatsby on WSL

Gatsby is a static site generator framework based on React.js. Learn how to install it on the Windows Subsystem

for Linux.

What is NodeJS?
 5/13/2021 • 3 minutes to read • Edit Online

 Does Node.js work on Windows?

 What can you do with NodeJS?

Node.js is an open-source, cross-platform, server-side JavaScript runtime environment built on Chrome’s V8

JavaScript engine originally authored by Ryan Dahl and released in 2009.

Yes. Windows 10 supports two different environments for developing apps with Node.js:

Install a Node.js development environment on Windows

Install a Node.js development environment on Windows Subsystem for Linux

For help determining which environment to use, check out Should I install on Windows or Windows Subsystem

for Linux?

Node.js is primarily used for building fast and scalable web applications. It uses an event-driven, non-blocking

I/O model, making it lightweight and efficient. It's a great framework for data-intensive real-time applications

that run across distributed devices. Here are a few examples of what you might create with Node.js.

S ingle-page apps (SPAs) : These are web apps that work inside a browser and don't need to reload a page

every time you use it to get new data. Some example SPAs include social networking apps, email or map

apps, online text or drawing tools, etc.

Real-time apps (RTAs) : These are web apps that enable users to receive information as soon as it's

published by an author, rather than requiring that the user (or software) check a source periodically for

updates. Some example RTAs include instant messaging apps or chat rooms, online multiplayer games that

can be played in the browser, online collaboration docs, community storage, video conference apps, etc.

Data streaming apps : These are apps (or services) that send data/content as it arrives (or is created) while

keeping the connection open to continue downloading further data, content, or components as needed.

Some examples include video- and audio-streaming apps.

REST APIs : These are interfaces that provide data for someone else's web app to interact with. For example,

a Calendar API service could provide dates and times for a concert venue that could be used by someone

else's local events website.

Ser ver-side rendered apps (SSRs) : These web apps can run on both the client (in your browser / the

front-end) and the server (the back-end) allowing pages that are dynamic to display (generate HTML for)

whatever content is known and quickly grab content that is not known as it's available. These are often

referred to as “isomorphic” or “universal” applications. SSRs utilize SPA methods in that they don't need to

reload every time you use it. SSRs, however, offer a few benefits that may or may not be important to you,

like making content on your site appear in Google search results and providing a preview image when links

to your app are shared on social media like Twitter or Facebook. The potential drawback being that they

require a Node.js server constantly running. In terms of examples, a social networking app that supports

events that users will want to appear in search results and social media may benefit from SSR, while an email

app may be fine as an SPA. You can also run server-rendered no-SPA apps, which my be something like a

WordPress blog. As you can see, things can get complicated, you just need to decide what's important.

Command line tools : These allow you to automate repetitive tasks and then distribute your tool across the

vast Node.js ecosystem. An example of a command line tool is cURL, which stand for client URL and is used

to download content from an internet URL. cURL is often used to install things like Node.js or, in our case, a

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/javascript/nodejs-overview.md
https://docs.microsoft.com/en-us/windows/dev-environment/javascript/windows-or-wsl

 Next steps

Node.js version manager.

Hardware programming: While not quite as popular as web apps, Node.js is growing in popularity for IoT

uses, such as collecting data from sensors, beacons, transmitters, motors, or anything that generates large

amounts of data. Node.js can enable data collection, analyzing that data, communicating back and forth

between a device and server, and taking action based on the analysis. NPM contains more than 80 packages

for Arduino controllers, raspberry pi, Intel IoT Edison, various sensors, and Bluetooth devices.

Should I install on Windows or Windows Subsystem for Linux (WSL)?

Install NodeJS on Windows

Install NodeJS on WSL

Microsoft Learn: Build JavaScript applications with Node.js

https://docs.microsoft.com/en-us/windows/dev-environment/javascript/windows-or-wsl
https://docs.microsoft.com/en-us/learn/paths/build-javascript-applications-nodejs/

Install Node.js on Windows Subsystem for Linux
(WSL2)

 6/30/2021 • 9 minutes to read • Edit Online

NOTE

 Install WSL 2

 Install Windows Terminal (optional)

 Install nvm, node.js, and npm

If you are using Node.js professionally, find performance speed and system call compatibility important, want to

run Docker containers that leverage Linux workspaces and avoid having to maintain both Linux and Windows

build scripts, or just prefer using a Bash command line, then you want to install Node.js on the Windows

Subsystem for Linux (more specifically, WSL 2).

Using Windows Subsystem for Linux (WSL), enables you to install your preferred Linux distribution (Ubuntu is

our default) so that you can have consistency between your development environment (where you write code)

and production environment (the server where your code is deployed).

If you are new to developing with Node.js and want to get up and running quickly so that you can learn, install Node.js on

Windows. This recommendation also applies if you plan to use a Windows Server production environment.

WSL 2 is the most recent version available on Windows 10 and we recommend it for professional Node.js

development workflows. To enable and install WSL 2, follow the steps in the WSL install documentation. These

steps will include choosing a Linux distribution (for example, Ubuntu).

Once you have installed WSL 2 and a Linux distribution, open the Linux distribution (it can be found in your

Windows start menu) and check the version and codename using the command: lsb_release -dc .

We recommend updating your Linux distribution regularly, including immediately after you install, to ensure

you have the most recent packages. Windows doesn't automatically handle this update. To update your

distribution, use the command: sudo apt update && sudo apt upgrade .

Windows Terminal is an improved command line shell that allows you to run multiple tabs so that you can

quickly switch between Linux command lines, Windows Command Prompt, PowerShell, Azure CLI, or whatever

you prefer to use. You can also create custom key bindings (shortcut keys for opening or closing tabs,

copy+paste, etc.), use the search feature, customize your terminal with themes (color schemes, font styles and

sizes, background image/blur/transparency), and more. Learn more in the Windows Terminal docs.

Install Windows Terminal using the Microsoft Store: By installing via the store, updates are handled

automatically.

Besides choosing whether to install on Windows or WSL, there are additional choices to make when installing

Node.js. We recommend using a version manager as versions change very quickly. You will likely need to switch

between multiple versions of Node.js based on the needs of different projects you're working on. Node Version

Manager, more commonly called nvm, is the most popular way to install multiple versions of Node.js. We will

walk through the steps to install nvm and then use it to install Node.js and Node Package Manager (npm). There

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/javascript/nodejs-on-wsl.md
https://docs.microsoft.com/en-us/windows/wsl/tutorials/wsl-containers
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.microsoft.com/en-us/windows/terminal
https://www.microsoft.com/store/apps/9n0dx20hk701

IMPORTANT

are alternative version managers to consider as well covered in the next section.

It is always recommended to remove any existing installations of Node.js or npm from your operating system before

installing a version manager as the different types of installation can lead to strange and confusing conflicts. For example,

the version of Node that can be installed with Ubuntu's apt-get command is currently outdated. For help with

removing previous installations, see How to remove nodejs from ubuntu.)

NOTE

1. Open your Ubuntu 18.04 command line.

2. Install cURL (a tool used for downloading content from the internet in the command-line) with:

sudo apt-get install curl

3. Install nvm, with: curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.35.3/install.sh | bash

At the time of publication, NVM v0.35.3 was the most recent version available. You can check the GitHub project

page for the latest release of NVM, and adjust the above command to include the newest version. Installing the

newer version of NVM using cURL will replace the older one, leaving the version of Node you've used NVM to

install intact. For example:

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.36.0/install.sh | bash

4. To verify installation, enter : command -v nvm ...this should return 'nvm', if you receive 'command not

found' or no response at all, close your current terminal, reopen it, and try again. Learn more in the nvm

github repo.

5. List which versions of Node are currently installed (should be none at this point): nvm ls

6. Install the current release of Node.js (for testing the newest feature improvements, but more likely to

have issues): nvm install node

7. Install the latest stable LTS release of Node.js (recommended): nvm install --lts

8. List what versions of Node are installed: nvm ls ...now you should see the two versions that you just

installed listed.

https://askubuntu.com/questions/786015/how-to-remove-nodejs-from-ubuntu-16-04
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm

 Alternative version managers

 Install Visual Studio Code

9. Verify that Node.js is installed and the currently default version with: node --version . Then verify that

you have npm as well, with: npm --version (You can also use which node or which npm to see the path

used for the default versions).

10. To change the version of Node.js you would like to use for a project, create a new project directory

mkdir NodeTest , and enter the directory cd NodeTest , then enter nvm use node to switch to the Current

version, or nvm use --lts to switch to the LTS version. You can also use the specific number for any

additional versions you've installed, like nvm use v8.2.1 . (To list all of the versions of Node.js available,

use the command: nvm ls-remote).

If you are using NVM to install Node.js and NPM, you should not need to use the SUDO command to install new

packages.

While nvm is currently the most popular version manager for node, there are a few alternatives to consider :

n is a long-standing nvm alternative that accomplishes the same thing with slightly different commands and

is installed via npm rather than a bash script.

fnm is a newer version manager, claiming to be much faster than nvm . (It also uses Azure Pipelines.)

Volta is a new version manager from the LinkedIn team that claims improved speed and cross-platform

support.

asdf-vm is a single CLI for multiple languages, like ike gvm, nvm, rbenv & pyenv (and more) all in one.

nvs (Node Version Switcher) is a cross-platform nvm alternative with the ability to integrate with VS Code.

We recommend using Visual Studio Code with the Remote-development extension pack for Node.js projects.

This splits VS Code into a “client-server” architecture, with the client (the VS Code user interface) running on

your Windows operating system and the server (your code, Git, plugins, etc) running "remotely" on your WSL

Linux distribution.

https://www.npmjs.com/package/n#installation
https://github.com/Schniz/fnm#using-a-script
https://docs.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-azure-pipelines
https://github.com/volta-cli/volta#installing-volta
https://asdf-vm.com/#/core-manage-asdf-vm
https://github.com/jasongin/nvs
https://github.com/jasongin/nvs/blob/master/doc/VSCODE.md
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.vscode-remote-extensionpack

NOTE

IMPORTANT

 Helpful VS Code Extensions

This “remote” scenario is a bit different than you may be accustomed to. WSL supports an actual Linux distribution where

your project code is running, separately from your Windows operating system, but still on your local machine. The

Remote-WSL extension connects with your Linux subsystem as if it were a remote server, though it’s not running in the

cloud… it’s still running on your local machine in the WSL environment that you enabled to run alongside Windows.

Linux-based Intellisense and linting is supported.

Your project will automatically build in Linux.

You can use all your extensions running on Linux (ES Lint, NPM Intellisense, ES6 snippets, etc.).

Other code editors, like IntelliJ, Sublime Text, Brackets, etc. will also work with a WSL 2 Node.js development

environment, but may not have the same sort of remote features that VS Code offers. These code editors may

run into trouble accessing the WSL shared network location (\wsl$\Ubuntu\home) and will try to build your

Linux files using Windows tools, which likely not what you want. The Remote-WSL Extension in VS Code handles

this compatibility for you, with other IDEs you may need to set up an X server. Support for running GUI apps in

WSL (like a code editor IDE) is coming soon.

Terminal-based text editors (vim, emacs, nano) are also helpful for making quick changes from right inside your

console. The article, Emacs, Nano, or Vim: Choose your Terminal-Based Text Editor Wisely does a nice job

explaining some differences and a bit about how to use each.

To install VS Code and the Remote-WSL Extension:

1. Download and install VS Code for Windows. VS Code is also available for Linux, but Windows Subsystem

for Linux does not support GUI apps, so we need to install it on Windows. Not to worry, you'll still be able

to integrate with your Linux command line and tools using the Remote - WSL Extension.

2. Install the Remote - WSL Extension on VS Code. This allows you to use WSL as your integrated

development environment and will handle compatibility and pathing for you. Learn more.

If you already have VS Code installed, you need to ensure that you have the 1.35 May release or later in order to install

the Remote - WSL Extension. We do not recommend using WSL in VS Code without the Remote-WSL extension as you

will lose support for auto-complete, debugging, linting, etc. Fun fact: This WSL extension is installed in $HOME/.vscode-

server/extensions.

While VS Code comes with many features for Node.js development out of the box, there are some helpful

extensions to consider installing available in the Node.js Extension Pack. Install them all or pick and choose

which seem the most useful to you.

To install the Node.js extension pack:

1. Open the Extensions window (Ctrl+Shift+X) in VS Code.

The Extensions window is now divided into three sections (because you installed the Remote-WSL

extension).

"Local - Installed": The extensions installed for use with your Windows operating system.

"WSL:Ubuntu-18.04-Installed": The extensions installed for use with your Ubuntu operating system

(WSL).

"Recommended": Extensions recommended by VS Code based on the file types in your current project.

https://marketplace.visualstudio.com/items?itemName=waderyan.nodejs-extension-pack
https://twitter.com/craigaloewen/status/1308452901266751488?lang=en
https://medium.com/linode-cube/emacs-nano-or-vim-choose-your-terminal-based-text-editor-wisely-8f3826c92a68
https://code.visualstudio.com
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-wsl
https://code.visualstudio.com/docs/remote/remote-overview
https://code.visualstudio.com/updates/v1_35
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-wsl
https://marketplace.visualstudio.com/items?itemName=waderyan.nodejs-extension-pack

 Set up Git (optional)

2. In the search box at the top of the Extensions window, enter : Node Extension Pack (or the name of

whatever extension you are looking for). The extension will be installed for either your Local or WSL

instances of VS Code depending on where you have the current project opened. You can tell by selecting

the remote link in the bottom-left corner of your VS Code window (in green). It will either give you the

option to open or close a remote connection. Install your Node.js extensions in the "WSL:Ubuntu-18.04"

environment.

A few additional extensions you may want to consider include:

Debugger for Chrome: Once you finish developing on the server side with Node.js, you'll need to develop

and test the client side. This extension integrates your VS Code editor with your Chrome browser debugging

service, making things a bit more efficient.

Keymaps from other editors: These extensions can help your environment feel right at home if you're

transitioning from another text editor (like Atom, Sublime, Vim, eMacs, Notepad++, etc).

Settings Sync: Enables you to synchronize your VS Code settings across different installations using GitHub.

If you work on different machines, this helps keep your environment consistent across them.

To set up Git for a Node.js project on WSL, see the article Get started using Git on Windows Subsystem for Linux

in the WSL documentation.

https://code.visualstudio.com/blogs/2016/02/23/introducing-chrome-debugger-for-vs-code
https://marketplace.visualstudio.com/search?target=VSCode&category=Keymaps&sortBy=Downloads
https://marketplace.visualstudio.com/items?itemName=Shan.code-settings-sync
https://docs.microsoft.com/en-us/windows/wsl/tutorials/wsl-git

Install NodeJS on Windows
 4/21/2021 • 6 minutes to read • Edit Online

NOTE

 Install nvm-windows, node.js, and npm

IMPORTANT

If you are new to developing with Node.js and want to get up and running quickly so that you can learn, follow

the steps below to install Node.js directly on Windows.

If you are using Node.js professionally, find performance speed and system call compatibility important, want to run

Docker containers that leverage Linux workspaces and avoid having to maintain both Linux and Windows build scripts, or

just prefer using a Bash command line, then install Node.js on Windows Subsystem for Linux (more specifically, WSL 2).

Besides choosing whether to install on Windows or WSL, there are additional choices to make when installing

Node.js. We recommend using a version manager as versions change very quickly. You will likely need to switch

between multiple Node.js versions based on the needs of different projects you're working on. Node Version

Manager, more commonly called nvm, is the most popular way to install multiple versions of Node.js, but is only

available for Mac/Linux and not supported on Windows. Instead, we will walk through the steps to install nvm-

windows and then use it to install Node.js and Node Package Manager (npm). There are alternative version

managers to consider as well covered in the next section.

It is always recommended to remove any existing installations of Node.js or npm from your operating system before

installing a version manager as the different types of installation can lead to strange and confusing conflicts. This includes

deleting any existing nodejs installation directories (e.g., "C:\Program Files\nodejs") that might remain. NVM's generated

symlink will not overwrite an existing (even empty) installation directory. For help with removing previous installations, see

How to completely remove node.js from Windows.)

1. Open the windows-nvm repository in your internet browser and select the Download Now link.

2. Download the nvm-setup.zip file for the most recent release.

3. Once downloaded, open the zip file, then open the nvm-setup.exe file.

4. The Setup-NVM-for-Windows installation wizard will walk you through the setup steps, including

choosing the directory where both nvm-windows and Node.js will be installed.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/javascript/nodejs-on-windows.md
https://stackoverflow.com/questions/20711240/how-to-completely-remove-node-js-from-windows
https://github.com/coreybutler/nvm-windows#node-version-manager-nvm-for-windows

5. Once the installation is complete. Open PowerShell and try using windows-nvm to list which versions of

Node are currently installed (should be none at this point): nvm ls

6. Install the current release of Node.js (for testing the newest feature improvements, but more likely to

have issues than the LTS version): nvm install latest

7. Install the latest stable LTS release of Node.js (recommended) by first looking up what the current LTS

version number is with: nvm list available , then installing the LTS version number with:

nvm install <version> (replacing <version> with the number, ie: nvm install 12.14.0).

 Alternative version managers

8. List what versions of Node are installed: nvm ls ...now you should see the two versions that you just

installed listed.

9. After installing the Node.js version numbers you need, select the version that you would like to use by

entering: nvm use <version> (replacing <version> with the number, ie: nvm use 12.9.0).

10. To change the version of Node.js you would like to use for a project, create a new project directory

mkdir NodeTest , and enter the directory cd NodeTest , then enter nvm use <version> replacing

<version> with the version number you'd like to use (ie v10.16.3`).

11. Verify which version of npm is installed with: npm --version , this version number will automatically

change to whichever npm version is associated with your current version of Node.js.

While windows-nvm is currently the most popular version manager for node, there are alternatives to consider :

nvs (Node Version Switcher) is a cross-platform nvm alternative with the ability to integrate with VS

Code.

Volta is a new version manager from the LinkedIn team that claims improved speed and cross-platform

support.

To install Volta as your version manager (rather than windows-nvm), go to the Windows Installation section

of their Getting Started guide, then download and run their Windows installer, following the setup instructions.

https://github.com/jasongin/nvs
https://github.com/jasongin/nvs/blob/master/doc/VSCODE.md
https://github.com/volta-cli/volta#installing-volta
https://docs.volta.sh/guide/getting-started

IMPORTANT

 Install Visual Studio Code

 Alternative code editors

 Install Git

You must ensure that Developer Mode is enabled on your Windows machine before installing Volta.

To learn more about using Volta to install multiple versions of Node.js on Windows, see the Volta Docs.

We recommend you install Visual Studio Code, as well as the Node.js Extension Pack, for developing with

Node.js on Windows. Install them all or pick and choose which seem the most useful to you.

To install the Node.js extension pack:

1. Open the Extensions window (Ctrl+Shift+X) in VS Code.

2. In the search box at the top of the Extensions window, enter : "Node Extension Pack" (or the name of whatever

extension you are looking for).

3. Select Install . Once installed, your extension will appear in the "Enabled" folder of your Extensions window.

You can disable, uninstall, or configure settings by selecting the gear icon next to the description of your new

extension.

A few additional extensions you may want to consider include:

Debugger for Chrome: Once you finish developing on the server side with Node.js, you'll need to develop

and test the client side. This extension integrates your VS Code editor with your Chrome browser debugging

service, making things a bit more efficient.

Keymaps from other editors: These extensions can help your environment feel right at home if you're

transitioning from another text editor (like Atom, Sublime, Vim, eMacs, Notepad++, etc).

Settings Sync: Enables you to synchronize your VS Code settings across different installations using GitHub.

If you work on different machines, this helps keep your environment consistent across them.

If you prefer to use a code editor or IDE other than Visual Studio Code, the following are also good options for

your Node.js development environment:

IntelliJ IDEA

Sublime Text

Atom

Brackets

Notepad++

If you plan to collaborate with others, or host your project on an open-source site (like GitHub), VS Code

supports version control with Git. The Source Control tab in VS Code tracks all of your changes and has

common Git commands (add, commit, push, pull) built right into the UI. You first need to install Git to power the

Source Control panel.

1. Download and install Git for Windows from the git-scm website.

2. An Install Wizard is included that will ask you a series of questions about settings for your Git installation.

We recommend using all of the default settings, unless you have a specific reason for changing

something.

3. If you've never worked with Git before, GitHub Guides can help you get started.

https://docs.microsoft.com/en-us/windows/uwp/get-started/enable-your-device-for-development#accessing-settings-for-developers
https://docs.volta.sh/guide/understanding#managing-your-toolchain
https://code.visualstudio.com
https://marketplace.visualstudio.com/items?itemName=waderyan.nodejs-extension-pack
https://code.visualstudio.com/blogs/2016/02/23/introducing-chrome-debugger-for-vs-code
https://marketplace.visualstudio.com/search?target=VSCode&category=Keymaps&sortBy=Downloads
https://marketplace.visualstudio.com/items?itemName=Shan.code-settings-sync
https://www.jetbrains.com/idea/download/#section=windows
https://www.sublimetext.com/3
https://atom.io/
http://brackets.io/
https://notepad-plus-plus.org/
https://code.visualstudio.com/docs/editor/versioncontrol#_git-support
https://git-scm.com/download/win
https://guides.github.com/

 Use Windows Subsystem for Linux for production

NOTE

4. We recommend adding a .gitignore file to your Node projects. Here is GitHub's default gitignore template

for Node.js.

Using Node.js directly on Windows is great for learning and experimenting with what you can do. Once you are

ready to build production-ready web apps, which are typically deployed to a Linux-based server, we recommend

using Windows Subsystem for Linux version 2 (WSL 2) for developing Node.js web apps. Many Node.js

packages and frameworks are created with a *nix environment in mind and most Node.js apps are deployed on

Linux, so developing on WSL ensures consistency between your development and production environments. To

set up a WSL dev environment, see Set up your Node.js development environment with WSL 2.

If you are in the (somewhat rare) situation of needing to host a Node.js app on a Windows server, the most common

scenario seems to be using a reverse proxy. There are two ways to do this: 1) using iisnode or directly. We do not

maintain these resources and recommend using Linux servers to host your Node.js apps.

https://help.github.com/en/articles/ignoring-files
https://github.com/github/gitignore/blob/master/Node.gitignore
https://medium.com/intrinsic/why-should-i-use-a-reverse-proxy-if-node-js-is-production-ready-5a079408b2ca
https://harveywilliams.net/blog/installing-iisnode
https://dev.to/petereysermans/hosting-a-node-js-application-on-windows-with-iis-as-reverse-proxy-397b
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-get-started-nodejs

Tutorial: Node.js for Beginners
 4/21/2021 • 6 minutes to read • Edit Online

 Prerequisites

 Try NodeJS with Visual Studio Code

NOTE

 Create your first NodeJS web app using Express

If you're brand new to using Node.js, this guide will help you to get started with some basics.

Try using Node.js in Visual Studio Code

Create your first Node.js web app using Express

Try using a Node.js module

Installing on Node.js on Windows or on Windows Subsystem for Linux

If you are a beginner, trying Node.js for the first time, we recommend installing directly on Windows. For more

information, see Should I install Node.js on Windows or Windows Subsystem for Linux

If you have not yet installed Visual Studio Code, return to the prerequisite section above and follow the

installation steps linked for Windows or WSL.

var msg = 'Hello World';
console.log(msg);

1. Open your command line and create a new directory: mkdir HelloNode , then enter the directory:

cd HelloNode

2. Create a JavaScript file named "app.js" with a variable named "msg" inside: echo var msg > app.js

3. Open the directory and your app.js file in VS Code using the command: code .

4. Add a simple string variable ("Hello World"), then send the contents of the string to your console by

entering this in your "app.js" file:

5. To run your "app.js" file with Node.js. Open your terminal right inside VS Code by selecting View >

Terminal (or select Ctrl+`, using the backtick character). If you need to change the default terminal, select

the dropdown menu and choose Select Default Shell .

6. In the terminal, enter : node app.js . You should see the output: "Hello World".

Notice that when you type console in your 'app.js' file, VS Code displays supported options related to the console

object for you to choose from using IntelliSense. Try experimenting with Intellisense using other JavaScript objects.

Express is a minimal, flexible, and streamlined Node.js framework that makes it easier to develop a web app that

can handle multiple types of requests, like GET, PUT, POST, and DELETE. Express comes with an application

generator that will automatically create a file architecture for your app.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/javascript/nodejs-beginners-tutorial.md
https://docs.microsoft.com/en-us/windows/dev-environment/javascript/windows-or-wsl
https://developer.mozilla.org/docs/Web/API/Console
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects

To create a project with Express.js:

NOTE

npm install

1. Open your command line (Command Prompt, Powershell, or whatever you prefer).

2. Create a new project folder : mkdir ExpressProjects and enter that directory: cd ExpressProjects

3. Use Express to create a HelloWorld project template: npx express-generator HelloWorld --view=pug

We are using the npx command here to execute the Express.js Node package without actually installing it (or by

temporarily installing it depending on how you want to think of it). If you try to use the express command or

check the version of Express installed using: express --version , you will receive a response that Express cannot

be found. If you want to globally install Express to use over and over again, use:

npm install -g express-generator . You can view a list of the packages that have been installed by npm using

npm list . They'll be listed by depth (the number of nested directories deep). Packages that you installed will be

at depth 0. That package's dependencies will be at depth 1, further dependencies at depth 2, and so on. To learn

more, see Difference between npx and npm? on StackOverflow.

4. Examine the files and folders that Express included by opening the project in VS Code, with: code .

The files that Express generates will create a web app that uses an architecture that can appear a little

overwhelming at first. You'll see in your VS Code Explorer window (Ctrl+Shift+E to view) that the

following files and folders have been generated:

bin . Contains the executable file that starts your app. It fires up a server (on port 3000 if no

alternative is supplied) and sets up basic error handling.

public . Contains all the publicly accessed files, including JavaScript files, CSS stylesheets, font files,

images, and any other assets that people need when they connect to your website.

routes . Contains all the route handlers for the application. Two files, index.js and users.js , are

automatically generated in this folder to serve as examples of how to separate out your application’s

route configuration.

views . Contains the files used by your template engine. Express is configured to look here for a

matching view when the render method is called. The default template engine is Jade, but Jade has

been deprecated in favor of Pug, so we used the --view flag to change the view (template) engine.

You can see the --view flag options, and others, by using express --help .

app.js . The starting point of your app. It loads everything and begins serving user requests. It's

basically the glue that holds all the parts together.

package.json . Contains the project description, scripts manager, and app manifest. Its main purpose is

to track your app's dependencies and their respective versions.

5. You now need to install the dependencies that Express uses in order to build and run your HelloWorld

Express app (the packages used for tasks like running the server, as defined in the package.json file).

Inside VS Code, open your terminal by selecting View > Terminal (or select Ctrl+`, using the backtick

character), be sure that you're still in the 'HelloWorld' project directory. Install the Express package

dependencies with:

6. At this point you have the framework set up for a multiple-page web app that has access to a large

variety of APIs and HTTP utility methods and middleware, making it easier to create a robust API. Start the

Express app on a virtual server by entering:

https://stackoverflow.com/questions/50605219/difference-between-npx-and-npm

 Try using a Node.js module

TO O L USED F O R

gm, sharp Image manipulation, including editing, resizing, compression,
and so on, directly in your JavaScript code

PDFKit PDF generation

validator.js String validation

imagemin, UglifyJS2 Minification

spritesmith Sprite sheet generation

winston Logging

npx cross-env DEBUG=HelloWorld:* npm start

TIP
The DEBUG=myapp:* part of the command above means you are telling Node.js that you want to turn on logging

for debugging purposes. Remember to replace 'myapp' with your app name. You can find your app name in the

package.json file under the "name" property. Using npx cross-env sets the DEBUG environment variable in

any terminal, but you can also set it with your terminal specific way. The npm start command is telling npm to

run the scripts in your package.json file.

7. You can now view the running app by opening a web browser and going to: localhost:3000

8. Now that your HelloWorld Express app is running locally in your browser, try making a change by

opening the 'views' folder in your project directory and selecting the 'index.pug' file. Once open, change

h1= title to h1= "Hello World!" and selecting Save (Ctrl+S). View your change by refreshing the

localhost:3000 URL on your web browser.

9. To stop running your Express app, in your terminal, enter : Ctr l+C

Node.js has tools to help you develop server-side web apps, some built in and many more available via npm.

These modules can help with many tasks:

commander.js Creating command-line applications

TO O L USED F O R

Let's use the built-in OS module to get some information about your computer's operating system:

TIP

1. In your command line, open the Node.js CLI. You'll see the > prompt letting you know you're using

Node.js after entering: node

2. To identify the operating system you are currently using (which should return a response letting you

know that you're on Windows), enter : os.platform()

3. To check your CPU's architecture, enter : os.arch()

4. To view the the CPUs available on your system, enter : os.cpus()

5. Leave the Node.js CLI by entering .exit or by selecting Ctrl+C twice.

You can use the Node.js OS module to do things like check the platform and return a platform-specific variable:

Win32/.bat for Windows development, darwin/.sh for Mac/unix, Linux, SunOS, and so on (for example,

var isWin = process.platform === "win32";).

React overview
 5/13/2021 • 7 minutes to read • Edit Online

 What is React JS?

 Does React work on Windows?

 What can you do with React?

React is an open-source JavaScript library for building front end user interfaces. Unlike other JavaScript libraries

that provide a full application framework, React is focused solely on creating application views through

encapsulated units called components that maintain state and generate UI elements. You can place an

individual component on a web page or nest hierarchies of components to create a complex UI.

React components are typically written in JavaScript and JSX (JavaScript XML) which is a JavaScript extension

that looks likes a lot like HTML, but has some syntax features that make it easier to do common tasks like

registering event handlers for UI elements. A React component implements the render method, which returns

the JSX representing the component's UI. In a web app, the JSX code returned by the component is translated

into browser-compliant HTML rendered in the browser.

Yes. Windows 10 supports two different environments for developing React apps:

Install a React development environment on Windows

Install a React development environment on Windows Subsystem for Linux

For help determining which environment to use, check out Should I install on Windows or Windows Subsystem

for Linux?

Windows 10 supports a wide range of scenarios for React developers, including:

Basic web apps : If you are new to React and primarily interested in learning about building a basic web

app with React, we recommend that you install create-react-app directly on Windows. If you're planning

to create a web app that will be deployed for production, you may want to consider installing create-

react-app on Windows Subsystem for Linux (WSL), for better performance speed, system call

compatibility, and alignment between your local development environment and deployment

environment (which is often a Linux server).

S ingle-Page Apps (SPAs) : These are websites that interact with the user by dynamically rewriting the

current web page with new data from a server, rather than the browser default of loading entire new

pages. If you want to build a static content-oriented SPA website, we recommend installing Gatsby on

WSL. If you want to build a server-rendered SPA website with a Node.js backend, we recommend

installing Next.js on WSL. (Though Next.js now also offers static file serving).

Native desktop apps : React Native for Windows + macOS enables you to build native desktop

applications with JavaScript that run across various types of desktop PCs, laptops, tablets, Xbox, and

Mixed Reality devices. It supports both the Windows SDK and macOS SDK.

Native mobile apps : React Native is a cross-platform way to create Android and iOS apps with

JavaScript that render to native platform UI code. There are two main ways to install React Native -- the

Expo CLI and the React Native CLI. There's a good comparison of the two on StackOverflow. Expo has a

client app for iOS and Android mobile devices for running and testing your apps. For instructions on

developing an Android app using Windows, React Native, and the Expo CLI see React Native for Android

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/javascript/react-overview.md
https://docs.microsoft.com/en-us/windows/dev-environment/javascript/windows-or-wsl
https://nextjs.org/docs/basic-features/static-file-serving
https://microsoft.github.io/react-native-windows/
https://microsoft.github.io/react-native-windows/docs/rnw-dependencies
https://microsoft.github.io/react-native-windows/docs/rnm-dependencies
https://reactnative.dev/docs/environment-setup
https://stackoverflow.com/questions/54862388/what-is-the-difference-between-expo-cli-and-react-native-cli

 Installation options

 React tools

 React Native component directory

development on Windows.

There are several different ways to install React along with an integrated toolchain that best works for your use-

case scenario. Here are a few of the most popular.

Install create-react-app directly on Windows

Install create-react-app on Windows Subsystem for L inux (WSL)

Install the Next.js framework on WSL

Install the Gatsby framework on WSL

Install React Native for Windows desktop development

Install React Native for Android development on Windows

Install React Native for mobile development across platforms)

Install React in the browser with no toolchain : Since React is a JavaScript library that is, in its most

basic form, just a collection of text files, you can create React apps without installing any tools or libraries on

your computer. You may only want to add a few "sprinkles of interactivity" to a web page and not need build

tooling. You can add a React component by just adding a plain <script> tag on an HTML page. Follow the

"Add React in One Minute" steps in the React docs.

While writing a simple React component in a plain text editor is a good introduction to React, code generated

this way is bulky, difficult to maintain and deploy, and slow. There are some common tasks production apps will

need to perform. These tasks are handled by other JavaScript frameworks that are taken by the app as a

dependency. These tasks include:

Compilation - JSX is the language commonly used for React apps, but browsers can't process this syntax

directly. Instead, the code needs to be compiled into standard JavaScript syntax and customized for different

browsers. Babel is an example of a compiler that supports JSX.

Bundling - Since performance is key for modern web apps, it's important that an app's JavaScript includes

only the needed code for the app and combined into as few files as possible. A bundler, such as webpack

performs this task for you.

Package management - Package managers make it easy to include the functionality of third-party

packages in your app, including updating them and managing dependencies. Commonly used package

managers include Yarn and npm.

Together, the suite of frameworks that help you create, build, and deploy your app are called a toolchain. An easy

toolchain to get started with is create-react-app, which generates a simple one-page app for you. The only setup

required to use create-react-app is Node.js.

For Windows development, follow the instructions to install Node.js on WSL or install Node.js on Windows.

For help deciding which to use, check out the article: Should I install on Windows or Windows Subsystem for

Linux?.

The components that can be used in a React Native app include the following:

Core components - Components that are developed and supported as part of the React Native framework.

Community components - Components that are developed and maintained by the community.

Native components - Components that you author yourself, using platform-native code, and register to be

accessible from React Native.

The React Native Directory provides a list of component libraries that can be filtered by target platform.

https://reactnative.dev/docs/environment-setup
https://reactjs.org/docs/add-react-to-a-website.html
https://reactjs.org/docs/add-react-to-a-website.html
https://babeljs.io/
https://webpack.js.org/
https://yarnpkg.com/
https://www.npmjs.com/
https://create-react-app.dev
https://docs.microsoft.com/en-us/windows/dev-environment/javascript/windows-or-wsl
https://reactnative.directory/

 Fullstack React toolchain options

 React courses and tutorials

 Additional resources

React is a library, not a framework, so may require additional tools to create a more complex app. In addition to

using React, you may want to consider using:

Package manager : Two popular package managers for React are npm (which is included with NodeJS) and

yarn. Both support a broad library of well-maintained packages that can be installed.

React Router: a collection of navigational components that can help you with things like bookmarkable URLs

for your web app or a composable way to navigate in React Native. React is really only concerned with state

management and rendering that state to the DOM, so creating React applications usually requires the use of

a routing library like React Router.

Redux: A predictable state container that helps with data-flow architecture. It is likely not something you need

until you get into more advanced React development. To quote Dan Abramov, one of the creators of Redux:

"Don't use Redux until you have problems with vanilla React."

Webpack: A build tool that lets you compile JavaScript modules, also known as module bundler. When

webpack processes your application, it internally builds a dependency graph which maps every module your

project needs and generates one or more bundles.

Uglify: A JavaScript parser, minifier, compressor and beautifier toolkit.

Babel: A JavaScript compiler mainly used to convert ECMAScript 2015+ code into a backwards compatible

version of JavaScript in current and older browsers or environments. It can also be helpful to use babel-

preset-env so that you don't need to micromanage syntax transforms or browser polyfills and can define

what internet browsers to support.

ESLint: A tool for identifying and reporting on patterns found in your JavaScript code that helps you make

your code more consistent and avoid bugs.

Enzyme: A JavaScript testing utility for React that makes it easier to test your React Components' output.

Jest: A testing framework built into the create-react-app package to help with writing idiomatic JavaScript

tests.

Mocha: A testing framework that runs on Node.js and in the browser to help with asynchronous testing,

reporting, and mapping uncaught exceptions to the correct test cases.

Here are a few recommended places to learn React and build sample apps:

Microsoft Learn: The React Learning Path contains online course modules to help you get started with the

basics.

Build a single-page app (SPA) that runs in the browser (like this sample web app that retrieves calendar info

for a user with the Microsoft Graph API)

Build a server-rendered app with Next.js or a static-site-generated app with Gatsby

Create a user interface (UI) for a native app that runs on Windows, Android, and iOS devices (checkout these

native Windows app samples or this sample native app that retrieves calendar info for a user with the

Microsoft Graph API)

Develop an app for Surface Duo dual-screen device

Create a web app or native app using Fluent UI React components

Build a React app with TypeScript

The official React docs offer all of the latest, up-to-date information on React

Microsoft Edge Add-ons for React Developer Tools: Add two tabs to your Microsoft Edge dev tools to help

with your React development: Components and Profiler.

https://www.npmjs.com/
https://yarnpkg.com/
https://reactrouter.com/
https://react-redux.js.org/
https://webpack.js.org/
https://www.npmjs.com/package/uglify-js
https://babeljs.io/
https://babeljs.io/docs/en/babel-preset-env
https://eslint.org/
https://enzymejs.github.io/enzyme/
https://jestjs.io/
https://mochajs.org/
https://docs.microsoft.com/en-us/learn/paths/react/
https://docs.microsoft.com/en-us/graph/tutorials/react
https://microsoft.github.io/react-native-windows/docs/view-managers
https://github.com/microsoft/react-native-windows-samples/tree/master/samples
https://docs.microsoft.com/en-us/graph/tutorials/react-native
https://docs.microsoft.com/en-us/dual-screen/react-native/
https://developer.microsoft.com/fluentui#/
https://create-react-app.dev/docs/adding-typescript/
https://reactjs.org/
https://microsoftedge.microsoft.com/addons/detail/react-developer-tools/gpphkfbcpidddadnkolkpfckpihlkkil

Install React on Windows Subsystem for Linux
 5/13/2021 • 3 minutes to read • Edit Online

 Prerequisites

IMPORTANT

 Install React

This guide will walk through installing React on a Linux distribution (ie. Ubuntu) running on the Windows

Subsystem for Linux (WSL) using the create-react-app toolchain.

We recommend following these instructions if you are creating a single-page app (SPA) that you would like to

use Bash commands or tools with and/or plan to deploy to a Linux server or use Docker containers. If you are

brand new to React and just interested in learning, you may want to consider installing with create-react-app

directly on Window.

For more general information about React, deciding between React (web apps), React Native (mobile apps), and

React Native for Windows (desktop apps), see the React overview.

Install the latest version of Windows 10 (Version 1903+, Build 18362+)

Install Windows Subsystem for Linux (WSL), including a Linux distribution (like Ubuntu) and make sure it is

running in WSL 2 mode. You can check this by opening PowerShell and entering: wsl -l -v

Install Node.js on WSL 2: These instructions use Node Version Manager (nvm) for installation, you will need a

recent version of NodeJS to run create-react-app, as well as a recent version of Node Package Manager

(npm). For exact version requirements, see the Create React App website.

Installing a Linux distribution with WSL will create a directory for storing files: \\wsl\Ubuntu-20.04 (substitute Ubuntu-

20.04 with whatever Linux distribution you're using). To open this directory in Windows File Explorer, open your WSL

command line, select your home directory using cd ~ , then enter the command explorer.exe . Be careful not to

install NodeJS or store files that you will be working with on the mounted C drive (/mnt/c/Users/yourname$). Doing so

will significantly slow down your install and build times.

To install the full React toolchain on WSL, we recommend using create-react-app:

npx create-react-app my-app

NOTE

1. Open a WSL command line (ie. Ubuntu).

2. Create a new project folder : mkdir ReactProjects and enter that directory: cd ReactProjects .

3. Install React using npx:

npx is the package runner used by npm to execute packages in place of a global install. It basically creates a

temporary install of React so that with each new project you are using the most recent version of React (not

whatever version was current when you performed the global install above). Using the NPX package runner to

execute a package can also help reduce the pollution of installing lots of packages on your machine.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/javascript/react-on-wsl.md
https://github.com/facebook/create-react-app
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://reactjs.org/docs/create-a-new-react-app.html#create-react-app
https://www.npmjs.com/package/npx
https://www.npmjs.com/package/npx

 Add React to an existing web app

 Additional resources

npm start

NOTE

4. This will first ask for your permission to temporarily install create-react-app and it's associated packages.

Once completed, change directories into your new app ("my-app" or whatever you've chosen to call it):

cd my-app .

5. Start your new React app:

This command will start up the Node.js server and launch a new browser window displaying your app.

You can use Ctr l + c to stop running the React app in your command line.

Create React App includes a frontend build pipeline using Babel and webpack, but doesn't handle backend logic or

databases. If you are seeking to build a server-rendered website with React that uses a Node.js backend, we

recommend installing Next.js, rather than this create-react-app installation, which is intended more for single-page

apps. You also may want to consider installing Gatsby if you want to build a static content-oriented website.

6. When you're ready to deploy your web app to production, running npm run build will create a build of

your app in the "build" folder. You can learn more in the Create React App User Guide.

Since React is a JavaScript library that is, in its most basic form, just a collection of text files, you can create React

apps without installing any tools or libraries on your computer. You may only want to add a few "sprinkles of

interactivity" to a web page and not need build tooling. You can add a React component by just adding a plain

<script> tag on an HTML page. Follow the "Add React in One Minute" steps in the React docs.

React docs

Create React App docs

Should I install on Windows or Windows Subsystem for Linux (WSL)?

Install Next.js

Install Gatsby

Install React Native for Windows

Install NodeJS on Windows

Install NodeJS on WSL

Try the tutorial: Using React in Visual Studio Code

Try the Microsoft Learn online course: React

https://babeljs.io/
https://webpack.js.org/
https://create-react-app.dev/docs/deployment
https://reactjs.org/docs/add-react-to-a-website.html
https://reactjs.org/
https://create-react-app.dev/docs/getting-started
https://docs.microsoft.com/en-us/windows/dev-environment/javascript/windows-or-wsl
https://microsoft.github.io/react-native-windows/docs/getting-started
https://code.visualstudio.com/docs/nodejs/reactjs-tutorial
https://docs.microsoft.com/en-us/learn/paths/react/

Install React directly on Windows
 5/13/2021 • 2 minutes to read • Edit Online

 Prerequisites

 Create your React app

This guide will walk through installing React directly on Windows using the create-react-app toolchain.

We recommend following these instructions if you are new to React and just interested in learning. If you are

creating a single-page app (SPA) that you would like to use Bash commands or tools with and/or plan to deploy

to a Linux server, we recommend that you install with create-react-app on Windows Subsystem for Linux (WSL).

For more general information about React, deciding between React (web apps), React Native (mobile apps), and

React Native for Windows (desktop apps), see the React overview.

Install the latest version of Windows 10 (Version 1903+, Build 18362+)

Install Windows Subsystem for Linux (WSL), including a Linux distribution (like Ubuntu) and make sure it is

running in WSL 2 mode. You can check this by opening PowerShell and entering: wsl -l -v

Install Node.js on WSL 2: These instructions use Node Version Manager (nvm) for installation, you will need a

recent version of NodeJS to run create-react-app, as well as a recent version of Node Package Manager

(npm). For exact version requirements, see the Create React App website.

To install the full React toolchain on WSL, we recommend using create-react-app:

npx create-react-app my-app

NOTE

npm start

1. Open a terminal(Windows Command Prompt or PowerShell).

2. Create a new project folder : mkdir ReactProjects and enter that directory: cd ReactProjects .

3. Install React using create-react-app, a tool that installs all of the dependencies to build and run a full

React.js application:

npx is the package runner used by npm to execute packages in place of a global install. It basically creates a

temporary install of React so that with each new project you are using the most recent version of React (not

whatever version was current when you performed the global install above). Using the NPX package runner to

execute a package can also help reduce the pollution of installing lots of packages on your machine.

4. This will first ask for your permission to temporarily install create-react-app and it's associated packages.

Once completed, change directories into your new app ("my-app" or whatever you've chosen to call it):

cd my-app .

5. Start your new React app:

This command will start up the Node.js server and launch a new browser window displaying your app.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/javascript/react-on-windows.md
https://github.com/facebook/create-react-app
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://reactjs.org/docs/create-a-new-react-app.html#create-react-app
https://www.npmjs.com/package/npx

 Additional resources

NOTE

You can use Ctr l + c to stop running the React app in your command line.

Create React App includes a frontend build pipeline using Babel and webpack, but doesn't handle backend logic or

databases. If you are seeking to build a server-rendered website with React that uses a Node.js backend, we

recommend installing Next.js, rather than this create-react-app installation, which is intended more for single-page

apps. You also may want to consider installing Gatsby if you want to build a static content-oriented website.

6. When you're ready to deploy your web app to production, running npm run build will create a build of

your app in the "build" folder. You can learn more in the Create React App User Guide.

React docs

Create React App docs

Should I install on Windows or Windows Subsystem for Linux (WSL)?

Install Next.js

Install Gatsby

Install React Native for Windows

Install NodeJS on Windows

Install NodeJS on WSL

Try the tutorial: Using React in Visual Studio Code

Try the Microsoft Learn online course: React

https://babeljs.io/
https://webpack.js.org/
https://create-react-app.dev/docs/deployment
https://reactjs.org/
https://create-react-app.dev/docs/getting-started
https://docs.microsoft.com/en-us/windows/dev-environment/javascript/windows-or-wsl
https://microsoft.github.io/react-native-windows/docs/getting-started
https://code.visualstudio.com/docs/nodejs/reactjs-tutorial
https://docs.microsoft.com/en-us/learn/paths/react/

Get started build a desktop app with React Native
for Windows

 5/13/2021 • 2 minutes to read • Edit Online

 Overview of React Native

 Prerequisites

 Install React Native for Windows

 Debug your React Native desktop app using Visual Studio

React Native for Windows allows you to create a Universal Windows Platform (UWP) app using React.

React Native is an open-source mobile application framework created by Facebook. It is used to develop

applications for Android, iOS, Web and UWP (Windows) providing native UI controls and full access to the

native platform. Working with React Native requires an understanding of JavaScript fundamentals.

For more general information about React, see the React overview page.

The setup requirements for using React Native for Windows can be found on the System Requirements page.

Ensure Developer Mode is turned ON in Windows Settings App.

You can create a Windows desktop app using React Native for Windows by following these steps.

npx react-native init <projectName> --template react-native@^0.63.2

cd projectName
npx react-native-windows-init --overwrite

npx react-native run-windows

1. Open a command line window (terminal) and navigate to the directory where you want to create your

Windows desktop app project.

2. You can use this command with the Node Package Executor (NPX) to create a React Native project without

the need to install locally or globally install additional tools. The command will generate a React Native

app in the directory specified by <projectName> .

3. Switch to the project directory and run the following command to install the React Native for Windows

packages:

4. To run the app, first launch your web browser (ie. Microsoft Edge), then execute the following command:

Install Visual Studio 2019 with the following options checked:

Workloads: Universal Windows Platform development & Desktop development with C++.

Individual Components: Development activities & Node.js development support.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/javascript/react-native-for-windows.md
https://microsoft.github.io/react-native-windows
https://github.com/facebook/react-native
https://microsoft.github.io/react-native-windows/docs/rnw-dependencies
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio

 Debug your React Native desktop app using Visual Studio Code

 Additional resources

Open the solution file in the application folder in Visual Studio (e.g.,

AwesomeProject/windows/AwesomeProject.sln if you used AwesomeProject as).

Select the Debug configuration and the x64 platform from the combo box controls to the left of the Run

button and underneath the Team and Tools menu item.

Run yarn start from your project directory, and wait for the React Native packager to report success.

Select Run to the right of the platform combo box control in VS, or select the Debug->Start without

Debugging menu item. You now see your new app and Chrome should have loaded

http://localhost:8081/debugger-ui/ in a new tab.

Select the F12 key or Ctrl+Shift+I to open Developer Tools in your web browser.

{
 "version": "0.2.0",
 "configurations": [
 {
 "name": "Debug Windows",
 "cwd": "${workspaceFolder}",
 "type": "reactnative",
 "request": "launch",
 "platform": "windows"
 }
]
}

Install Visual Studio Code

Open your applications folder in VS Code.

Install the React Native Tools plugin for VS Code.

Create a new file in the applications root directory, .vscode/launch.json and paste the following

configuration:

Press F5 or navigate to the debug menu (alternatively press Ctrl+Shift+D) and in the Debug dropdown

select "Debug Windows" and press the green arrow to run the application.

React Native for Windows docs

React Native docs

React docs

Should I install on Windows or Windows Subsystem for Linux (WSL)?

Install NodeJS on Windows

Try the Microsoft Learn online course: React

https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=msjsdiag.vscode-react-native
https://microsoft.github.io/react-native-windows/docs/getting-started
https://reactnative.dev/docs/getting-started
https://reactjs.org/
https://docs.microsoft.com/en-us/windows/dev-environment/javascript/windows-or-wsl
https://docs.microsoft.com/en-us/learn/paths/react/

Get started developing for Android using React
Native

 4/21/2021 • 3 minutes to read • Edit Online

 Overview

 Get started with React Native by installing required tools

This guide will help you to get started using React Native on Windows to create a cross-platform app that will

work on Android devices.

React Native is an open-source mobile application framework created by Facebook. It is used to develop

applications for Android, iOS, Web and UWP (Windows) providing native UI controls and full access to the

native platform. Working with React Native requires an understanding of JavaScript fundamentals.

1. Install Visual Studio Code (or your code editor of choice).

2. Install Android Studio for Windows. Android Studio installs the latest Android SDK by default. React

Native requires Android 6.0 (Marshmallow) SDK or higher. We recommend using the latest SDK.

3. Create environment variable paths for the Java SDK and Android SDK:

In the Windows search menu, enter : "Edit the system environment variables", this will open the

System Proper ties window.

Choose Environment Variables... and then choose New... under User var iables .

Enter the Variable name and value (path). The default paths for the Java and Android SDKs are as

follows. If you've chosen a specific location to install the Java and Android SDKs, be sure to update the

variable paths accordingly.

JAVA_HOME: C:\Program Files\Android\Android Studio\jre\jre

ANDROID_HOME: C:\Users\username\AppData\Local\Android\Sdk

4. Install NodeJS for Windows You may want to consider using Node Version Manager (nvm) for Windows

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/javascript/react-native-for-android.md
https://github.com/facebook/react-native
https://code.visualstudio.com
https://developer.android.com/studio
https://nodejs.org/en/
https://github.com/coreybutler/nvm-windows#node-version-manager-nvm-for-windows

NOTE

 Create a new project with React Native

if you will be working with multiple projects and version of NodeJS. We recommend installing the latest

LTS version for new projects.

You may also want to consider installing and using the Windows Terminal for working with your preferred command-line

interface (CLI), as well as, Git for version control. The Java JDK comes packaged with Android Studio v2.2+, but if you need

to update your JDK separately from Android Studio, use the Windows x64 Installer.

npx react-native init MyReactNativeApp

cd MyReactNativeApp

npx react-native run-android

1. Use npx, the package runner tool that is installed with npm to create a new React Native project. from the

Windows Command Prompt, PowerShell, Windows Terminal, or the integrated terminal in VS Code (View

> Integrated Terminal).

2. Open your new "MyReactNativeApp" directory:

3. If you want to run your project on a hardware Android device, connect the device to your computer with

a USB cable.

4. If you want to run your project on an Android emulator, you shouldn't need to take any action as Android

Studio installs with a default emulator installed. If you want to run your app on the emulator for a

particular device. Click on the AVD Manager button in the toolbar.

.

5. To run your project, enter the following command. This will open a new console window displaying Node

Metro Bundler.

https://www.microsoft.com/p/windows-terminal-preview/9n0dx20hk701?activetab=pivot:overviewtab
https://git-scm.com/downloads
https://www.oracle.com/java/technologies/javase-downloads.html
https://www.oracle.com/java/technologies/javase-jdk14-downloads.html
https://www.npmjs.com/package/npx
https://www.microsoft.com/p/windows-terminal-preview/9n0dx20hk701?activetab=pivot:overviewtab

NOTE

C:\Users\[User Name]\AppData\Local\Android\Sdk\tools\bin\sdkmanager --licenses

<Text style={styles.sectionDescription}>
 Edit <Text style={styles.highlight}>App.js</Text> to change this
 screen and then come back to see your edits. HELLO WORLD!
</Text>

If you are using a new install of Android Studio and haven't yet done any other Android development, you may

get errors at the command line when you run the app about accepting licenses for the Android SDK. Such as

"Warning: License for package Android SDK Platform 29 not accepted." To resolve this, you can click the SDK

Manager button in Android Studio . Or, you can list and accept the licenses with the following command,

making sure to use the path to the SDK location on your machine.

6. To modify the app, open the MyReactNativeApp project directory in the IDE of your choice. We

recommend VS Code or Android Studio.

7. The project template created by react-native init uses a main page named App.js . This page is pre-

populated with a lot of useful links to information about React Native development. Add some text to the

first Text element, like the "HELLO WORLD!" string shown below.

8. Reload the app to show the changes you made. There are several ways to do this.

In the Metro Bundler console window, type "r".

In the Android device emulator, double tap "r" on your keyboard.

On a hardware android device, shake the device to bring up the React Native debug menu and select

`Reload'.

 Additional resources
Develop Dual-screen apps for Android and get the Surface Duo device SDK

Add Windows Defender exclusions to improve performance

Enable Virtualization support to improve Emulator performance

https://docs.microsoft.com/en-us/dual-screen/android/

Get started with Next.js on Windows
 5/24/2021 • 3 minutes to read • Edit Online

 Prerequisites

IMPORTANT

 Install Next.js

A guide to help you install the Next.js web framework and get up and running on Windows 10.

Next.js is a framework for creating server-rendered JavaScript apps based on React.js, Node.js, Webpack and

Babel.js. It is basically a project boilerplate for React, crafted with attention to best practices, that allows you to

create "universal" web apps in a simple, consistent way, with hardly any configuration. These "universal" server-

rendered web apps are also sometimes called “isomorphic”, meaning that code is shared between the client and

server.

To learn more about React and other JavaScript frameworks based on React, see the React overview page.

This guide assumes that you've already completed the steps to set up your Node.js development environment,

including:

Install the latest version of Windows 10 (Version 1903+, Build 18362+)

Install Windows Subsystem for Linux (WSL), including a Linux distribution (like Ubuntu) and make sure it is

running in WSL 2 mode. You can check this by opening PowerShell and entering: wsl -l -v

Install Node.js on WSL 2: This includes a version manager, package manager, Visual Studio Code, and the

Remote Development extension.

We recommend using the Windows Subsystem for Linux when working with NodeJS apps for better

performance speed, system call compatibility, and for parody when running Linux servers or Docker containers.

Installing a Linux distribution with WSL will create a directory for storing files: \\wsl\Ubuntu-20.04 (substitute Ubuntu-

20.04 with whatever Linux distribution you're using). To open this directory in Windows File Explorer, open your WSL

command line, select your home directory using cd ~ , then enter the command explorer.exe . Be careful not to

install NodeJS or store files that you will be working with on the mounted C drive (/mnt/c/Users/yourname$). Doing so

will significantly slow down your install and build times.

To install Next.js, which includes installing next, react, and react-dom:

1. Open a WSL command line (ie. Ubuntu).

2. Create a new project folder : mkdir NextProjects and enter that directory: cd NextProjects .

3. Install Next.js and create a project (replacing 'my-next-app' with whatever you'd like to call your app):

npx create-next-app my-next-app .

4. Once the package has been installed, change directories into your new app folder, cd my-next-app , then

use code . to open your Next.js project in VS Code. This will allow you to look at the Next.js framework

that has been created for your app. Notice that VS Code opened your app in a WSL-Remote environment

(as indicated in the green tab on the bottom-left of your VS Code window). This means that while you are

using VS Code for editing on the Windows OS, it is still running your app on the Linux OS.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/javascript/nextjs-on-wsl.md
https://docs.microsoft.com/en-us/windows/wsl/install-win10

5. There are 3 commands you need to know once Next.js is installed:

npm run dev for running a development instance with hot-reloading, file watching and task re-

running.

npm run build for compiling your project.

npm start for starting your app in production mode.

Open the WSL terminal integrated in VS Code (View > Terminal). Make sure that the terminal path is

pointed to your project directory (ie. ~/NextProjects/my-next-app$). Then try running a development

instance of your new Next.js app using: npm run dev

6. The local development server will start and once your project pages are done building, your terminal will

display "compiled successfully - ready on http://localhost:3000". Select this localhost link to open your

new Next.js app in a web browser.

7. Open the pages/index.js file in your VS Code editor. Find the page title

<h1 className='title'>Welcome to Next.js!</h1> and change it to

<h1 className='title'>This is my new Next.js app!</h1> . With your web browser still open to

localhost:3000, save your change and notice the hot-reloading feature automatically compile and update

your change in the browser.

8. Let's see how Next.js handles errors. Remove the </h1> closing tag so that your title code now looks like

this: <h1 className='title'>This is my new Next.js app! . Save this change and notice that a "Failed to

compile" error will display in your browser, and in your terminal, letting your know that a closing tag for

<h1> is expected. Replace the </h1> closing tag, save, and the page will reload.

You can use VS Code's debugger with your Next.js app by selecting the F5 key, or by going to View > Debug

(Ctrl+Shift+D) and View > Debug Console (Ctrl+Shift+Y) in the menu bar. If you select the gear icon in the

Debug window, a launch configuration (launch.json) file will be created for you to save debugging setup

details. To learn more, see VS Code Debugging.

http://localhost:3000
https://code.visualstudio.com/docs/nodejs/nodejs-debugging

To learn more about Next.js, see the Next.js docs.

https://nextjs.org/docs

Get started with Gatsby.js on Windows
 4/21/2021 • 4 minutes to read • Edit Online

 Prerequisites

IMPORTANT

 Install Gatsby.js

A guide to help you install the Gatsby.js web framework and get up and running on Windows 10.

Gatsby.js is a static site generator framework based on React.js, as opposed to being server-rendered like Next.js.

A static site generator generates static HTML on build time. It doesn’t require a server. Next.js generates HTML

on runtime (each time a new request comes in), requiring a server to run. Gatsby also dictates how to handle

data in your app (with GraphQL), whereas Next.js leaves that decision up to you.

To learn more about React and other JavaScript frameworks based on React, see the React overview page.

This guide assumes that you've already completed the steps to set up your Node.js development environment,

including:

Install the latest version of Windows 10 (Version 1903+, Build 18362+)

Install Windows Subsystem for Linux (WSL), including a Linux distribution (like Ubuntu) and make sure it is

running in WSL 2 mode. You can check this by opening PowerShell and entering: wsl -l -v

Install Node.js on WSL 2: This includes a version manager, package manager, Visual Studio Code, and the

Remote Development extension.

We recommend using the Windows Subsystem for Linux when working with NodeJS apps for better

performance speed, system call compatibility, and for parody when running Linux servers or Docker containers.

Installing a Linux distribution with WSL will create a directory for storing files: \\wsl\Ubuntu-20.04 (substitute Ubuntu-

20.04 with whatever Linux distribution you're using). To open this directory in Windows File Explorer, open your WSL

command line, select your home directory using cd ~ , then enter the command explorer.exe . Be careful not to

install NodeJS or store files that you will be working with on the mounted C drive (/mnt/c/Users/yourname$). Doing so

will significantly slow down your install and build times.

To create a Gatsby.js project:

1. Open your WSL terminal (ie. Ubuntu 18.04).

2. Create a new project folder : mkdir GatsbyProjects and enter that directory: cd GatsbyProjects

3. Use npm to install the Gatsby CLI: npm install -g gatsby-cli . Once installed, check the version with

gatsby --version .

4. Create your Gatsby.js project: gatsby new my-gatsby-app

5. Once the package has been installed, change directories into your new app folder, cd my-gatsby-app , then

use code . to open your Gatsby project in VS Code. This will allow you to look at the Gatsby.js

framework that has been created for your app using VS Code's File Explorer. Notice that VS Code opened

your app in a WSL-Remote environment (as indicated in the green tab on the bottom-left of your VS

Code window). This means that while you are using VS Code for editing on the Windows OS, it is still

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/javascript/gatsby-on-wsl.md
https://docs.microsoft.com/en-us/windows/wsl/install-win10

NOTE

running your app on the Linux OS.

6. There are 3 commands you need to know once Gatsby is installed:

gatsby develop for running a development instance with hot-reloading.

gatsby build for creating a production build.

gatsby serve for starting your app in production mode.

Open the WSL terminal integrated in VS Code (View > Terminal). Make sure that the terminal path is

pointed to your project directory (ie. ~/GatsbyProjects/my-gatsby-app$). Then try running a development

instance of your new app using: gatsby develop

7. Once your new Gatsby project finishes compiling, your terminal will display that "You can now view

gatsby-starter-default in the browser. http://localhost:8000/." Select this localhost link to view your new

project built in a web browser.

You'll notice that your terminal output also let's you know that you can "View GraphiQL, an in-browser IDE, to explore

your site's data and schema: http://localhost:8000/___graphql." GraphQL consolidates your APIs into a self-documenting

IDE (GraphiQL) built into Gatsby. In addition to exploring your site's data and schema, you can perform GraphQL

operations such as queries, mutations, and subscriptions. For more info, see Introducing GraphiQL.

8. Open the src/pages/index.js file in your VS Code editor. Find the page title <h1 >Hi people</h1> and

change it to <h1 >Hi (Your Name)!</h1> . With your web browser still open to localhost:8000, save your

change and notice the hot-reloading feature automatically compile and update your change in the

browser.

9. Let's see how Next.js handles errors. Remove the </h1> closing tag so that your title code now looks like

this: <h1>Hi (Your Name)! . Save this change and notice that a "Failed to compile" error will display in your

http://localhost:8000/
http://localhost:8000/___graphql
https://www.gatsbyjs.org/docs/running-queries-with-graphiql/

browser, and in your terminal, letting your know that a closing tag for <h1> is expected. Replace the

</h1> closing tag, save, and the page will reload.

You can use VS Code's debugger with your Next.js app by selecting the F5 key, or by going to View > Debug

(Ctrl+Shift+D) and View > Debug Console (Ctrl+Shift+Y) in the menu bar. If you select the gear icon in the

Debug window, a launch configuration (launch.json) file will be created for you to save debugging setup

details. To learn more, see VS Code Debugging.

To learn more about Gatsby, see the Gatsby.js docs.

https://code.visualstudio.com/docs/nodejs/nodejs-debugging
https://www.gatsbyjs.org/docs/

Tutorial: React on Windows for beginners
 5/13/2021 • 6 minutes to read • Edit Online

 Prerequisites

 A few basic terms and concepts

 Try using React in Visual Studio Code

If you're brand new to using React, this guide will help you to get started with some basics.

A few basic terms and concepts

Try using React in Visual Studio Code

Try using React with an API

Install React (Should I install on Windows or Windows Subsystem for Linux)

Install VS Code. We recommend installing VS Code on Windows, regardless of whether you plan to use React

on Windows or WSL.

Install React on Windows

Install React on Windows Subsystem for Linux

React is a JavaScript library for building user interfaces.

It is open-source, meaning that you can contribute to it by filing issues or pull requests. (Just like these

docs!)

It is declarative, meaning that you write the code that you want and React takes that declared code and

performs all of the JavaScript/DOM steps to get the desired result.

It is component-based, meaning that applications are created using prefabricated and reusable

independent code modules that manage their own state and can be glued together using the React

framework, making it possible to pass data through your app while keeping state out of the DOM.

The React motto is "Learn once, write anywhere." The intention is for code reuse and not making

assumptions about how you will use React UI with other technologies, but to make components reusable

without the need to rewrite existing code.

JSX is a syntax extension for JavaScript written to be used with React that looks like HTML, but is actually

a JavaScript file that needs to be compiled, or translated into regular JavaScript.

Virtual DOM: DOM stands for Document Object Model and represents the UI of your app. Every time the

state of your app's UI changes, the DOM gets updated to represent the change. When a DOM is

frequently updating, performance becomes slow. A Virtual DOM is only a visual representation of the

DOM, so when the state of the app changes, the virtual DOM is updated rather than the real DOM,

reducing the performance cost. It's a representation of a DOM object, like a lightweight copy.

Views: are what the user sees rendered in the browser. In React, view is related to the concept of

rendering elements that you want a user to see on their screen.

State: refers to the data stored by different views. The state will typically rely on who the user is and what

the user is doing. For example, signing into a website may show your user profile (view) with your name

(state). The state data will change based on the user, but the view will remain the same.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/javascript/react-beginners-tutorial.md
https://docs.microsoft.com/en-us/windows/dev-environment/javascript/windows-or-wsl
https://code.visualstudio.com/download
https://github.com/facebook/react
https://docs.microsoft.com/en-us/contribute/
https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Component-based_software_engineering
https://en.wikipedia.org/wiki/Code_reuse
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/faq-internals.html
https://en.wikipedia.org/wiki/Document_Object_Model
https://reactjs.org/docs/rendering-elements.html
https://reactjs.org/docs/faq-state.html

 Try using React with an API

There are many ways to create an application with React (see the React Overview for examples). This tutorial will

walk through how to use create-react-app to fast-forward the set up for a functioning React app so that you can

see it running and focus on experimenting with the code, not yet concerning yourself with the build tools.

<p>Edit <code>src/App.js</code> and save to reload.</p>

<p>Hello World! This is my first React app.</p>

1. Use create-react-app on Windows or WSL (see the prerequisites above) to create a new project:

npx create-react-app hello-world

2. Change directories so that you're inside the folder for your new app: cd hello-world and start your app:

npm start

Your new React Hello World app will compile and open your default web browser to show that it's

running on localhost:3000.

3. Stop running your React app (Ctrl+c) and open it's code files in VS Code by entering: code .

4. Find the src/App.js file and find the header section that reads:

Change it to read:

Using the same Hello World! app that you built with React and updated with Visual Studio Code, let's try adding

an API call to display some data.

1. First, let's remove everything from that app.js file and make it into a class component. We will first import

component from React and use it to create the class component. (There are two types of components:

class and function). We will also add some custom JSX code in a return() statement. You can reload the

page to see the result.

Your app.js file should now look like this:

https://create-react-app.dev/
https://reactjs.org/docs/react-component.html

import React, { Component } from 'react';

class App extends Component {
 render() {
 return (
 <p>Hello world! This is my first React app.</p>
);
 }
}
export default App;

import React, { Component } from 'react';

class App extends Component {
constructor(props) {
 super(props);
 this.state = {
 posts: []
 }
 }
 render() {
 return (
 <p>Hello world!</p>
);
 }
}
export default App;

2. Next, let's set a local state where we can save data from an API. A state object is where we can store data

to be used in the view. The view is rendered to the page inside of render() .

To add a local state, we need to first add a constructor. When implementing the constructor for a

React.Component subclass, you should call super(props) before any other statement. Otherwise,

this.props will be undefined in the constructor, which can lead to bugs. Props are what pass data down

into components.

We also need to initialize the local state and assign an object to this.state . We will use "posts" as an

empty array that we can fill with post data from an API.

Your app.js file should now look like this:

3. To call an API with data for us to use in our React app, we will use the .fetch JavaScript method. The API

we will call is JSONPlaceholder, a free API for testing and prototyping that serves up fake placeholder

data in JSON format. The componentDidMount method is used to mount the fetch to our React

component. The data from the API is saved in our state (using the setState request).

https://reactjs.org/docs/react-component.html#constructor
https://reactjs.org/docs/components-and-props.html
https://jsonplaceholder.typicode.com/guide/
https://reactjs.org/docs/react-component.html#mounting
https://reactjs.org/docs/react-component.html#setstate

import React, { Component } from 'react';

class App extends Component {
constructor(props) {
 super(props);
 this.state = {
 posts: []
 }
 }
 componentDidMount() {
 const url = "https://jsonplaceholder.typicode.com/albums/1/photos";
 fetch(url)
 .then(response => response.json())
 .then(json => this.setState({ posts: json }))
 }
 render() {
 return (
 <p>Hello world!</p>
);
 }
}
export default App;

[
 {
 "albumId": 1,
 "id": 1,
 "title": "accusamus beatae ad facilis cum similique qui sunt",
 "url": "https://via.placeholder.com/600/92c952",
 "thumbnailUrl": "https://via.placeholder.com/150/92c952"
 },
 {
 "albumId": 1,
 "id": 2,
 "title": "reprehenderit est deserunt velit ipsam",
 "url": "https://via.placeholder.com/600/771796",
 "thumbnailUrl": "https://via.placeholder.com/150/771796"
 }
]

 <!-- Bootstrap -->
 <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.0-beta3/dist/css/bootstrap.min.css"
rel="stylesheet" integrity="sha384-eOJMYsd53ii+scO/bJGFsiCZc+5NDVN2yr8+0RDqr0Ql0h+rP48ckxlpbzKgwra6"
crossorigin="anonymous">

 <title>React App</title>
 </head>
 <body>

4. Let's take a look at what sort of data the API has saved in our posts state. Below is some of the contents

of the fake JSON API file. We can see the format the data is listed in, using the categories: "albumId", "id",

"title", "url", and "thumbnailUrl".

5. We will need to add some page styling to display our API data. Let's just use Bootstrap to handle the

styling for us. We can copy + paste the Bootstrap CDN stylesheet reference inside the

./public/index.html file of our React app.

6. To display the API data, referencing our Bootstrap classes for styling, we will now need to add a bit of JSX

code inside the rendered return() statement. We will add a container, a header ("Posts from our API

call"), and a card for each piece of data from our API. We will use the map() method to display our data

https://jsonplaceholder.typicode.com/albums/1/photos
https://getbootstrap.com/docs/5.0/getting-started/introduction/
https://reactjs.org/docs/lists-and-keys.html

 Additional resources

 render() {
 const { posts } = this.state;
 return (
 <div className="container">
 <div class="jumbotron">
 <h1 class="display-4">Posts from our API call</h1>
 </div>
 {posts.map((post) => (
 <div className="card" key={post.id}>
 <div className="card-header">
 ID #{post.id} {post.title}
 </div>
 <div className="card-body">

 </div>
 </div>
))}
 </div>
);
 }

from the posts object that we stored it in as keys. Each card will display a header with "ID #" and then

the post.id key value + post.title key value from our JSON data. Followed by the body displaying the

image based on the thumbnailURL key value.

7. Run your React app again: npm start and take a look in your local web browser on localhost:3000 to

see your API data being displayed.

The official React docs offer all of the latest, up-to-date information on React

Microsoft Edge Add-ons for React Developer Tools: Add two tabs to your Microsoft Edge dev tools to help

with your React development: Components and Profiler.

Microsoft Learn: The React Learning Path contains online course modules to help you get started with the

basics.

https://reactjs.org/
https://microsoftedge.microsoft.com/addons/detail/react-developer-tools/gpphkfbcpidddadnkolkpfckpihlkkil
https://docs.microsoft.com/en-us/learn/paths/react/

What is Vue.js?
 5/13/2021 • 2 minutes to read • Edit Online

 What makes Vue unique?

 What can you do with Vue?

 Vue tools

 Additional resources

Vue is an open-source, front end JavaScript framework for building user interfaces and single-page applications

on the web. Created by Evan You, released in 2014 and maintained by Evan and his core team, Vue focuses on

declarative rendering and component composition offering a core library for the view layer only.

If you want to build a server-rendered Vue web app with advanced features such as routing, state management

and build tooling, take a look at Nuxt.js.

Vue uses a model-view-viewmodel architecture. Evan You previously worked on AngularJS at Google and

extracted parts of Angular to offer a more lightweight framework. Vue is in may ways similar to React, Angular,

Ember, Knockout, etc. See the Vue documentation for a more in-depth comparison to these other JavaScript

frameworks.

Build a single-page app (SPA)

Use just a component of Vue to add a simple to-do list to your app or find more complex examples

Build a server-rendered website with a Node.js backend, with help from Nuxt.js

Vue.js is focused only on the view layer, so may require additional tools to create a more complex app. You may

want to consider using:

Package manager : Two popular package managers for Vue are npm (which is included with NodeJS) and

yarn. Both support a broad library of well-maintained packages that can be installed.

Vue CLI: a standard toolkit for rapid Vue.js development with out-of-the-box support for Babel, PostCSS,

TypeScript, ESLint, etc.

Nuxt.js: A framework to make server-side rendered Vue.js apps possible. Server-side rendering can improve

SEO and make user interfaces more responsive.

Vue extension pack for VS Code: Adds syntax highlighting, code formatting, and code snippets to your .vue

files.

Vuetify: A Vue UI library offering Material Design Framework components.

Vuesion: A Vue boilerplate for production-ready Progressive Web Apps (PWAs).

Storybook: A development and testing environment for Vue user interface components.

Vue Router: Supports mapping application URLs to Vue components.

Vue Design System: An open source tool for building Design Systems with Vue.js.

VueX: State management system for Vue apps.

Vue docs

Vue.js overview

Should I install on Windows or Windows Subsystem for Linux (WSL)?

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/javascript/vue-overview.md
https://vuejs.org/v2/guide/comparison.html
https://vuejs.org/v2/guide/single-file-components.html#Getting-Started
https://vuejsexamples.com/
https://www.npmjs.com/
https://yarnpkg.com/
https://cli.vuejs.org
https://marketplace.visualstudio.com/items?itemName=mubaidr.vuejs-extension-pack
https://vuetifyjs.com/
https://github.com/vuesion/vuesion
https://storybook.js.org/
https://router.vuejs.org/
https://vueds.com/
https://vuex.vuejs.org/
https://vuejs.org/
https://docs.microsoft.com/en-us/windows/dev-environment/javascript/windows-or-wsl

Install Vue.js on WSL

Install Vue.js on Windows

Install Nuxt.js

Microsoft Learn online course: Take your first steps with Vue.js

Try a Vue tutorial with VS Code

https://docs.microsoft.com/en-us/learn/paths/vue-first-steps/
https://code.visualstudio.com/docs/nodejs/vuejs-tutorial

Install Vue.js on Windows Subsystem for Linux
 5/13/2021 • 2 minutes to read • Edit Online

 Prerequisites

IMPORTANT

 Install Vue.js

npm install vue

NOTE

 Install Vue CLI

A guide to help you set up a Vue.js development environment on Windows 10 by installing the Vue.js web

framework on Windows Subsystem for Linux (WSL). Learn more on the Vue.js overview page.

Vue can be installed directly on Windows or on WSL. We generally recommend installing on WSL if you are

planning to interact with a NodeJS backend, want parody with a Linux production server, or plan to follow along

with a tutorial that utilizes Bash commands. For more info, see Should I install on Windows or Windows

Subsystem for Linux?.

Install Windows Subsystem for Linux (WSL), including a Linux distribution (like Ubuntu) and make sure it is

running in WSL 2 mode. You can check this by opening PowerShell and entering: wsl -l -v

Install Node.js on WSL 2: This includes a version manager, package manager, Visual Studio Code, and the

Remote Development extension. The Node Package Manager (npm) is used to install Vue.js.

Installing a Linux distribution with WSL will create a directory for storing files: \\wsl\Ubuntu-20.04 (substitute Ubuntu-

20.04 with whatever Linux distribution you're using). To open this directory in Windows File Explorer, open your WSL

command line, select your home directory using cd ~ , then enter the command explorer.exe . Be careful not to

install or store files that you will be working with on the mounted C drive (/mnt/c/Users/yourname$). Doing so will

significantly slow down your install and build times.

To install Vue.js on WSL:

1. Open a WSL command line (ie. Ubuntu).

2. Create a new project folder : mkdir VueProjects and enter that directory: cd VueProjects .

3. Install Vue.js using Node Package Manager (npm):

Check the version number you have installed by using the command: vue --version .

To install Vue.js using a CDN, rather than NPM, see the Vue.js install docs.

Vue CLI is a toolkit for working with Vue in your terminal / command line. It enables you to quickly scaffold a

new project (vue create), prototype new ideas (vue serve), or manage projects using a graphical user interface

(vue ui). Vue CLI is a globally installed npm package that handles some of the build complexities (like using

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/javascript/vue-on-wsl.md
https://docs.microsoft.com/en-us/windows/dev-environment/javascript/windows-or-wsl
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://vuejs.org/v2/guide/installation.html#CDN

npm install -g @vue/cli

 Additional resources

Babel or Webpack) for you. If you are not building a new single-page app, you may not need or want Vue CLI.

To install Vue CLI, use npm. You must use the -g flag to globally install in order to upgrade (

vue upgrade --next):

To learn more about additional plugins that can be added (such as linting or Apollo for integrating GraphQL),

visit Vue CLI plugins in the Vue CLI docs.

Vue docs

Vue.js overview

Should I install on Windows or Windows Subsystem for Linux (WSL)?

Install Vue.js on Windows

Install Nuxt.js

Microsoft Learn online course: Take your first steps with Vue.js

Try a Vue tutorial with VS Code

https://cli.vuejs.org/guide/#cli-plugins
https://vuejs.org/
https://docs.microsoft.com/en-us/windows/dev-environment/javascript/windows-or-wsl
https://docs.microsoft.com/en-us/learn/paths/vue-first-steps/
https://code.visualstudio.com/docs/nodejs/vuejs-tutorial

Install Vue.js directly on Windows
 7/16/2021 • 2 minutes to read • Edit Online

 Prerequisites

 Install Vue.js

npm install vue

NOTE

 Install Vue CLI

npm install -g @vue/cli

A guide to help you set up a Vue.js development environment on Windows 10. Learn more on the Vue.js

overview page.

Vue can be installed directly on Windows or on the Windows Subsystem for Linux (WSL). We generally

recommend that you install Vue on WSL if you are planning to interact with a NodeJS backend, want parity with

a Linux production server, or plan to follow along with a tutorial that utilizes Bash commands. For more info, see

Should I install on Windows or Windows Subsystem for Linux?.

Install Node.js on Windows: This includes a version manager, package manager, and Visual Studio Code. The

Node Package Manager (npm) is used to install Vue.js.

To install Vue.js:

1. Open a command line (ie. Windows Command Prompt or PowerShell).

2. Create a new project folder : mkdir VueProjects and enter that directory: cd VueProjects .

3. Install Vue.js using Node Package Manager (npm):

Check the version number you have installed by using the command: vue --version .

To install Vue.js using a CDN, rather than NPM, see the Vue.js install docs. See the Vue docs for an Explanation of different

Vue builds.

Vue CLI is a toolkit for working with Vue in your terminal / command line. It enables you to quickly scaffold a

new project (vue create), prototype new ideas (vue serve), or manage projects using a graphical user interface

(vue ui). Vue CLI is a globally installed npm package that handles some of the build complexities (like using

Babel or Webpack) for you. If you are not building a new single-page app, you may not need or want Vue CLI.

To install Vue CLI, use npm. You must use the -g flag to globally install in order to upgrade (

vue upgrade --next):

To learn more about additional plugins that can be added (such as linting or Apollo for integrating GraphQL),

visit Vue CLI plugins in the Vue CLI docs.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/javascript/vue-on-windows.md
https://docs.microsoft.com/en-us/windows/dev-environment/javascript/windows-or-wsl
https://vuejs.org/v2/guide/installation.html#CDN
https://vuejs.org/v2/guide/installation.html#Explanation-of-Different-Builds
https://cli.vuejs.org/guide/#cli-plugins

 Additional resources
Vue docs

Vue.js overview

Should I install on Windows or Windows Subsystem for Linux (WSL)?

Install Vue.js on WSL

Install Nuxt.js

Microsoft Learn online course: Take your first steps with Vue.js

Try a Vue tutorial with VS Code

https://vuejs.org/
https://docs.microsoft.com/en-us/windows/dev-environment/javascript/windows-or-wsl
https://docs.microsoft.com/en-us/learn/paths/vue-first-steps/
https://code.visualstudio.com/docs/nodejs/vuejs-tutorial

Get started with Nuxt.js on Windows
 4/21/2021 • 4 minutes to read • Edit Online

 Prerequisites

IMPORTANT

 Install Nuxt.js

A guide to help you install the Nuxt.js web framework and get up and running on Windows 10.

Nuxt.js is a framework for creating server-rendered JavaScript apps based on Vue.js, Node.js, Webpack and

Babel.js. It was inspired by Next.js. It is basically a project boilerplate for Vue. Just like Next.js, it is crafted with

attention to best practices and allows you to create "universal" web apps in a simple, consistent way, with hardly

any configuration. These "universal" server-rendered web apps are also sometimes called “isomorphic”,

meaning that code is shared between the client and server.

To learn more about Vue, see the Vue overview page.

This guide assumes that you've already completed the steps to set up your Node.js development environment,

including:

Install Windows Subsystem for Linux (WSL), including a Linux distribution (like Ubuntu) and make sure it is

running in WSL 2 mode. You can check this by opening PowerShell and entering: wsl -l -v

Install Node.js on WSL 2: This includes a version manager, package manager, Visual Studio Code, and the

Remote Development extension.

We recommend using the Windows Subsystem for Linux when working with NodeJS apps for better

performance speed, system call compatibility, and for parody when running Linux servers or Docker containers.

Installing a Linux distribution with WSL will create a directory for storing files: \\wsl\Ubuntu-20.04 (substitute Ubuntu-

20.04 with whatever Linux distribution you're using). To open this directory in Windows File Explorer, open your WSL

command line, select your home directory using cd ~ , then enter the command explorer.exe . Be careful not to

install NodeJS or store files that you will be working with on the mounted C drive (/mnt/c/Users/yourname$). Doing so

will significantly slow down your install and build times.

To install Nuxt.js, you will need to answer a series of questions about what sort of integrated server-side

framework, UI framework, testing framework, mode, modules, and linter you would like to install:

1. Open a WSL command line (ie. Ubuntu).

2. Create a new project folder : mkdir NuxtProjects and enter that directory: cd NuxtProjects .

3. Install Nuxt.js and create a project (replacing 'my-nuxt-app' with whatever you'd like to call your app):

npm create nuxt-app my-nuxt-app

4. The Nuxt.js installer will now ask you the following questions:

Project Name: my-nuxtjs-app

Project description: Description of my Nuxt.js app.

Author name: I use my GitHub alias.

Choose the package manager : Yarn or Npm - we use NPM for our examples.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/javascript/nuxtjs-on-wsl.md
https://docs.microsoft.com/en-us/windows/wsl/install-win10

Choose UI framework: None, Ant Design Vue, Bootstrap Vue, etc. Let's choose Vuetify for this

example, but the Vue Community created a nice summary comparing these UI frameworks to help

you choose the best fit for your project.

Choose custom server frameworks: None, AdonisJs, Express, Fastify, etc. Let's choose None for this

example, but you can find a 2019-2020 server framework comparison on the Dev.to site.

Choose Nuxt.js modules (use spacebar to select modules or just enter if you don't want any): Axios (for

simplifying HTTP requests) or PWA support (for adding a service-worker, manifest.json file, etc). Let's

not add a module for this example.

Choose linting tools: ESLint, Prettier, Lint staged files. Let's choose ESLint (a tool for analyzing your

code and warning you of potential errors).

Choose a test framework: None, Jest, AVA. Let's choose None as we won't cover testing in this

quickstart.

Choose rendering mode: Universal (SSR) or Single Page App (SPA). Let's choose Universal (SSR)

for our example, but the Nuxt.js docs point out some of the differences -- SSR requiring a Node.js

server running to server-render your app and SPA for static hosting.

Choose development tools: jsconfig.json (recommended for VS Code so Intellisense code

completion works)

5. Once your project is created, cd my-nuxtjs-app to enter your Nuxt.js project directory, then enter code .

to open the project in the VS Code WSL-Remote environment.

6. There are 3 commands you need to know once Nuxt.js is installed:

npm run dev for running a development instance with hot-reloading, file watching and task re-

running.

npm run build for compiling your project.

npm start for starting your app in production mode.

Open the WSL terminal integrated in VS Code (View > Terminal). Make sure that the terminal path is

pointed to your project directory (ie. ~/NuxtProjects/my-nuxt-app$). Then try running a development

instance of your new Nuxt.js app using: npm run dev

7. The local development server will start (displaying some kind of cool progress bars for the client and

server compiles). Once your project is done building, your terminal will display "Compiled successfully"

along with how much time it took to compile. Point your web browser to http://localhost:3000 to open

your new Nuxt.js app.

https://vue-community.org/guide/ecosystem/ui-libraries.html#summary-tldr
https://dev.to/santypk4/introducing-the-best-10-node-js-frameworks-for-2019-and-2020-mcm
https://pwa.nuxtjs.org/
https://nuxtjs.org/guide#server-rendered-universal-ssr-
http://localhost:3000

8. Open the pages/index.vue file in your VS Code editor. Find the page title

<v-card-title class="headline">Welcome to the Vuetify + Nuxt.js template</v-card-title> and change it

to <v-card-title class="headline">This is my new Nuxt.js app!</v-card-title> . With your web browser

still open to localhost:3000, save your change and notice the hot-reloading feature automatically compile

and update your change in the browser.

9. Let's see how Nuxt.js handles errors. Remove the </v-card-title> closing tag so that your title code now

looks like this: <v-card-title class="headline">This is my new Nuxt.js app! . Save this change and notice

that a compiling error will display in your browser, and in your terminal, letting your know that a closing

tag for <v-card-title> is missing, along with the line numbers where the error can be found in your

code. Replace the </v-card-title> closing tag, save, and the page will reload.

You can use VS Code's debugger with your Nuxt.js app by selecting the F5 key, or by going to View > Debug

(Ctrl+Shift+D) and View > Debug Console (Ctrl+Shift+Y) in the menu bar. If you select the gear icon in the

Debug window, a launch configuration (launch.json) file will be created for you to save debugging setup

details. To learn more, see VS Code Debugging.

To learn more about Nuxt.js, see the Nuxt.js guide.

https://code.visualstudio.com/docs/nodejs/nodejs-debugging
https://nuxtjs.org/guide

Tutorial: Vue.js for Beginners
 5/13/2021 • 2 minutes to read • Edit Online

 Prerequisites

 Try NodeJS with Visual Studio Code

If you're brand new to using Vue.js, this guide will help you to get started with some basics.

Try the Vue.js HelloWorld code sandbox

Try using Node.js in Visual Studio Code

You must first install Vue.js on Windows or on Windows Subsystem for Linux. Not sure which to use,

generally we recommend beginners install on Windows to learn, but professionals install on WSL, see

Should I install Node.js on Windows or Windows Subsystem for Linux.

If you don't already have it, install VS Code. We recommend installing VS Code on Windows, regardless of

whether you plan to use Vue on Windows or WSL.

NOTE

1. Open your command line and create a new directory: mkdir HelloVue , then enter the directory:

cd HelloVue

2. Install the Vue CLI: npm install -g @vue/cli

3. Create your Vue app: vue create hello-vue-app

You'll need to choose whether to use Vue 2 or Vue 3 Preview, or manually select the features you want.

4. Open the directory of your new hello-vue-app: cd hello-vue-app

5. Try running you new Vue app in your web browser : npm run serve

You should see "Welcome to your Vue.js App" on http://localhost:8080 in your browser. You can press

Ctrl+C to stop the vue-cli-service server.

If using WSL (with Ubuntu or your favorite Linux distribution) for this tutorial, you'll need to make sure that you

have the Remote - WSL Extension installed for the best experience running and editing your code with VS remote

server.

6. Try updating the welcome message by opening your Vue app's source code in VS Code, enter : code .

7. VS Code will launch and display your Vue application in the File Explorer. Run your app in the terminal

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/javascript/vue-beginners-tutorial.md
https://codesandbox.io/s/github/vuejs/vuejs.org/tree/master/src/v2/examples/vue-20-hello-world
https://docs.microsoft.com/en-us/windows/dev-environment/javascript/windows-or-wsl
https://code.visualstudio.com/download
https://v3.vuejs.org/guide/migration/introduction.html#overview
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-wsl

 Additional resources

again with npm run serve and have your web browser open to the localhost so that you can see the Vue

page welcome page displayed. Find the App.vue file in VS Code. Try changing "Welcome to your Vue.js

App" to "Welcome to the Jungle!". You will see your Vue app "hot reload" as soon as you save your

change.

Using Vue in Visual Studio Code: Find more about using Vue with VS Code, including the Vetur extension

that provides Vue syntax highlighting, IntelliSense, debugging support, and more.

Vue.js docs

Vue comparison with other frameworks like React or Angular

Vue.js overview

Microsoft Learn online course: Take your first steps with Vue.js

https://code.visualstudio.com/docs/nodejs/vuejs-tutorial
https://vuejs.org/v2/guide/#What-is-Vue-js
https://vuejs.org/v2/guide/comparison.html
https://docs.microsoft.com/en-us/learn/paths/vue-first-steps/

Get started using Python on Windows for beginners
 5/5/2021 • 10 minutes to read • Edit Online

 Set up your development environment

 Install Python

 Install Visual Studio Code

The following is a step-by-step guide for beginners interested in learning Python using Windows 10.

For beginners who are new to Python, we recommend you install Python from the Microsoft Store. Installing via

the Microsoft Store uses the basic Python3 interpreter, but handles set up of your PATH settings for the current

user (avoiding the need for admin access), in addition to providing automatic updates. This is especially helpful

if you are in an educational environment or a part of an organization that restricts permissions or administrative

access on your machine.

If you are using Python on Windows for web development, we recommend a different set up for your

development environment. Rather than installing directly on Windows, we recommend installing and using

Python via the Windows Subsystem for Linux. For help, see: Get started using Python for web development on

Windows. If you're interested in automating common tasks on your operating system, see our guide: Get started

using Python on Windows for scripting and automation. For some advanced scenarios (like needing to

access/modify Python's installed files, make copies of binaries, or use Python DLLs directly), you may want to

consider downloading a specific Python release directly from python.org or consider installing an alternative,

such as Anaconda, Jython, PyPy, WinPython, IronPython, etc. We only recommend this if you are a more

advanced Python programmer with a specific reason for choosing an alternative implementation.

To install Python using the Microsoft Store:

1. Go to your Star t menu (lower left Windows icon), type "Microsoft Store", select the link to open the store.

2. Once the store is open, select Search from the upper-right menu and enter "Python". Select which

version of Python you would like to use from the results under Apps. We recommend using the most

recent unless you have a reason not to (such as aligning with the version used on a pre-existing project

that you plan to work on). Once you've determined which version you would like to install, select Get.

3. Once Python has completed the downloading and installation process, open Windows PowerShell using

the Star t menu (lower left Windows icon). Once PowerShell is open, enter Python --version to confirm

that Python3 has installed on your machine.

4. The Microsoft Store installation of Python includes pip, the standard package manager. Pip allows you to

install and manage additional packages that are not part of the Python standard library. To confirm that

you also have pip available to install and manage packages, enter pip --version .

By using VS Code as your text editor / integrated development environment (IDE), you can take advantage of

IntelliSense (a code completion aid), Linting (helps avoid making errors in your code), Debug support (helps you

find errors in your code after you run it), Code snippets (templates for small reusable code blocks), and Unit

testing (testing your code's interface with different types of input).

VS Code also contains a built-in terminal that enables you to open a Python command line with Windows

Command prompt, PowerShell, or whatever you prefer, establishing a seamless workflow between your code

editor and command line.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/python/beginners.md
https://www.microsoft.com/p/python-37/9nj46sx7x90p?activetab=pivot:overviewtab
https://www.python.org/downloads/
https://www.python.org/download/alternatives
https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/python/linting
https://code.visualstudio.com/docs/python/debugging
https://code.visualstudio.com/docs/editor/userdefinedsnippets
https://code.visualstudio.com/docs/python/unit-testing
https://code.visualstudio.com/docs/editor/integrated-terminal

 Install Git (optional)

 Hello World tutorial for some Python basics

1. To install VS Code, download VS Code for Windows: https://code.visualstudio.com.

2. Once VS Code has been installed, you must also install the Python extension. To install the Python

extension, you can select the VS Code Marketplace link or open VS Code and search for Python in the

extensions menu (Ctrl+Shift+X).

3. Python is an interpreted language, and in order to run Python code, you must tell VS Code which

interpreter to use. We recommend using the most recent version of Python unless you have a specific

reason for choosing something different. Once you've installed the Python extension, select a Python 3

interpreter by opening the Command Palette (Ctrl+Shift+P), start typing the command Python: Select

Interpreter to search, then select the command. You can also use the Select Python Environment

option on the bottom Status Bar if available (it may already show a selected interpreter). The command

presents a list of available interpreters that VS Code can find automatically, including virtual

environments. If you don't see the desired interpreter, see Configuring Python environments.

4. To open the terminal in VS Code, select View > Terminal , or alternatively use the shortcut Ctr l+` (using

the backtick character). The default terminal is PowerShell.

5. Inside your VS Code terminal, open Python by simply entering the command: python

6. Try the Python interpreter out by entering: print("Hello World") . Python will return your statement

"Hello World".

If you plan to collaborate with others on your Python code, or host your project on an open-source site (like

GitHub), VS Code supports version control with Git. The Source Control tab in VS Code tracks all of your

changes and has common Git commands (add, commit, push, pull) built right into the UI. You first need to install

Git to power the Source Control panel.

1. Download and install Git for Windows from the git-scm website.

2. An Install Wizard is included that will ask you a series of questions about settings for your Git installation.

We recommend using all of the default settings, unless you have a specific reason for changing

something.

3. If you've never worked with Git before, GitHub Guides can help you get started.

https://code.visualstudio.com
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://code.visualstudio.com/docs/python/environments
https://code.visualstudio.com/docs/editor/versioncontrol#_git-support
https://git-scm.com/download/win
https://guides.github.com/

 Hello World tutorial for using Python with VS Code

Python, according to its creator Guido van Rossum, is a “high-level programming language, and its core design

philosophy is all about code readability and a syntax which allows programmers to express concepts in a few

lines of code.”

Python is an interpreted language. In contrast to compiled languages, in which the code you write needs to be

translated into machine code in order to be run by your computer's processor, Python code is passed straight to

an interpreter and run directly. You just type in your code and run it. Let's try it!

1. With your PowerShell command line open, enter python to run the Python 3 interpreter. (Some

instructions prefer to use the command py or python3 , these should also work). You will know that

you're successful because a >>> prompt with three greater-than symbols will display.

2. There are several built-in methods that allow you to make modifications to strings in Python. Create a

variable, with: variable = 'Hello World!' . Press Enter for a new line.

3. Print your variable with: print(variable) . This will display the text "Hello World!".

4. Find out the length, how many characters are used, of your string variable with: len(variable) . This will

display that there are 12 characters used. (Note that the blank space it counted as a character in the total

length.)

5. Convert your string variable to upper-case letters: variable.upper() . Now convert your string variable to

lower-case letters: variable.lower() .

6. Count how many times the letter "l" is used in your string variable: variable.count("l") .

7. Search for a specific character in your string variable, let's find the exclamation point, with:

variable.find("!") . This will display that the exclamation point is found in the 11th position character of

the string.

8. Replace the exclamation point with a question mark: variable.replace("!", "?") .

9. To exit Python, you can enter exit() , quit() , or select Ctrl-Z.

Hope you had fun using some of Python's built-in string modification methods. Now try creating a Python

program file and running it with VS Code.

The VS Code team has put together a great Getting Started with Python tutorial walking through how to create a

Hello World program with Python, run the program file, configure and run the debugger, and install packages

like matplotlib and numpy to create a graphical plot inside a virtual environment.

1. Open PowerShell and create an empty folder called "hello", navigate into this folder, and open it in VS

https://code.visualstudio.com/docs/python/python-tutorial#_start-vs-code-in-a-project-workspace-folder

 Create a simple game with Pygame

mkdir hello
cd hello
code .

Code:

2. Once VS Code opens, displaying your new hello folder in the left-side Explorer window, open a

command line window in the bottom panel of VS Code by pressing Ctr l+` (using the backtick character)

or selecting View > Terminal . By starting VS Code in a folder, that folder becomes your "workspace". VS

Code stores settings that are specific to that workspace in .vscode/settings.json, which are separate from

user settings that are stored globally.

3. Continue the tutorial in the VS Code docs: Create a Python Hello World source code file.

Pygame is a popular Python package for writing games - encouraging students to learn programming while

creating something fun. Pygame displays graphics in a new window, and so it will not work under the

command-line-only approach of WSL. However, if you installed Python via the Microsoft Store as detailed in this

tutorial, it will work fine.

1. Once you have Python installed, install pygame from the command line (or the terminal from within VS

Code) by typing python -m pip install -U pygame --user .

2. Test the installation by running a sample game : python -m pygame.examples.aliens

3. All being well, the game will open a window. Close the window when you are done playing.

Here's how to start writing your own game.

https://code.visualstudio.com/docs/python/python-tutorial#_create-a-python-hello-world-source-code-file

mkdir bounce
cd bounce
new-item bounce.py
code .

import sys, pygame

pygame.init()

size = width, height = 640, 480
dx = 1
dy = 1
x= 163
y = 120
black = (0,0,0)
white = (255,255,255)

screen = pygame.display.set_mode(size)

while 1:

 for event in pygame.event.get():
 if event.type == pygame.QUIT: sys.exit()

 x += dx
 y += dy

 if x < 0 or x > width:
 dx = -dx

 if y < 0 or y > height:
 dy = -dy

 screen.fill(black)

 pygame.draw.circle(screen, white, (x,y), 8)

 pygame.display.flip()

1. Open PowerShell (or Windows Command Prompt) and create an empty folder called "bounce". Navigate

to this folder and create a file named "bounce.py". Open the folder in VS Code:

2. Using VS Code, enter the following Python code (or copy and paste it):

3. Save it as: bounce.py .

4. From the PowerShell terminal, run it by entering: python bounce.py .

 Resources for continued learning

 Online courses for learning Python

 Working with Python in VS Code

Try adjusting some of the numbers to see what effect they have on your bouncing ball.

Read more about writing games with pygame at pygame.org.

We recommend the following resources to support you in continuing to learn about Python development on

Windows.

Introduction to Python on Microsoft Learn: Try the interactive Microsoft Learn platform and earn

experience points for completing this module covering the basics on how to write basic Python code,

declare variables, and work with console input and output. The interactive sandbox environment makes

this a great place to start for folks who don't have their Python development environment set up yet.

Python on Pluralsight: 8 Courses, 29 Hours: The Python learning path on Pluralsight offers online courses

covering a variety of topics related to Python, including a tool to measure your skill and find your gaps.

LearnPython.org Tutorials: Get started on learning Python without needing to install or set anything up

with these free interactive Python tutorials from the folks at DataCamp.

The Python.org Tutorials: Introduces the reader informally to the basic concepts and features of the

Python language and system.

Learning Python on Lynda.com: A basic introduction to Python.

Editing Python in VS Code: Learn more about how to take advantage of VS Code's autocomplete and

IntelliSense support for Python, including how to customize their behavior... or just turn them off.

Linting Python: Linting is the process of running a program that will analyse code for potential errors.

Learn about the different forms of linting support VS Code provides for Python and how to set it up.

Debugging Python: Debugging is the process of identifying and removing errors from a computer

program. This article covers how to initialize and configure debugging for Python with VS Code, how to

set and validate breakpoints, attach a local script, perform debugging for different app types or on a

remote computer, and some basic troubleshooting.

http://www.pygame.org
https://docs.microsoft.com/en-us/learn/modules/intro-to-python/
https://app.pluralsight.com/paths/skills/python
https://www.learnpython.org/
https://docs.python.org/3/tutorial/index.html
https://www.lynda.com/Python-tutorials/Learning-Python/661773-2.html
https://code.visualstudio.com/docs/python/editing
https://code.visualstudio.com/docs/python/linting
https://code.visualstudio.com/docs/python/debugging

Unit testing Python: Covers some background explaining what unit testing means, an example

walkthrough, enabling a test framework, creating and running your tests, debugging tests, and test

configuration settings.

https://code.visualstudio.com/docs/python/unit-testing

Get started using Python for web development on
Windows

 3/5/2021 • 17 minutes to read • Edit Online

 Set up your development environment

 Install Windows Subsystem for Linux

TIP

 Set up Visual Studio Code

The following is a step-by-step guide to get you started using Python for web development on Windows, using

the Windows Subsystem for Linux (WSL).

We recommend installing Python on WSL when building web applications. Many of the tutorials and

instructions for Python web development are written for Linux users and use Linux-based packaging and

installation tools. Most web apps are also deployed on Linux, so this will ensure you have consistency between

your development and production environments.

If you are using Python for something other than web development, we recommend you install Python directly

on Windows 10 using the Microsoft Store. WSL does not support GUI desktops or applications (like PyGame,

Gnome, KDE, etc). Install and use Python directly on Windows for these cases. If you're new to Python, see our

guide: Get started using Python on Windows for beginners. If you're interested in automating common tasks on

your operating system, see our guide: Get started using Python on Windows for scripting and automation. For

some advanced scenarios, you may want to consider downloading a specific Python release directly from

python.org or consider installing an alternative, such as Anaconda, Jython, PyPy, WinPython, IronPython, etc. We

only recommend this if you are a more advanced Python programmer with a specific reason for choosing an

alternative implementation.

WSL lets you run a GNU/Linux command line environment integrated directly with Windows and your favorite

tools, like Visual Studio Code, Outlook, etc.

To enable and install WSL (or WSL 2 depending on your needs), follow the steps in the WSL install

documentation. These steps will include choosing a Linux distribution (for example, Ubuntu).

Once you have installed WSL and a Linux distribution, open the Linux distribution (it can be found in your

Windows start menu) and check the version and codename using the command: lsb_release -dc .

We recommend updating your Linux distribution regularly, including immediately after you install, to ensure

you have the most recent packages. Windows doesn't automatically handle this update. To update your

distribution, use the command: sudo apt update && sudo apt upgrade .

Consider installing the new Windows Terminal from the Microsoft Store to enable multiple tabs (quickly switch between

multiple Linux command lines, Windows Command Prompt, PowerShell, Azure CLI, etc), create custom key bindings

(shortcut keys for opening or closing tabs, copy+paste, etc.), use the search feature, and set up custom themes (color

schemes, font styles and sizes, background image/blur/transparency). Learn more.

Take advantage of IntelliSense, Linting, Debug support, Code snippets, and Unit testing by using VS Code. VS

Code integrates nicely with the Windows Subsystem for Linux, providing a built-in terminal to establish a

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/python/web-frameworks.md
https://www.python.org/downloads/windows/
https://www.python.org/download/alternatives
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://www.microsoft.com/store/apps/9n0dx20hk701
https://docs.microsoft.com/en-us/windows/terminal
https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/python/linting
https://code.visualstudio.com/docs/python/debugging
https://code.visualstudio.com/docs/editor/userdefinedsnippets
https://code.visualstudio.com/docs/python/unit-testing
https://code.visualstudio.com/docs/editor/integrated-terminal

IMPORTANT

 Create a new project

TIP

 Install Python, pip, and venv

seamless workflow between your code editor and your command line, in addition to supporting Git for version

control with common Git commands (add, commit, push, pull) built right into the UI.

1. Download and install VS Code for Windows. VS Code is also available for Linux, but Windows Subsystem

for Linux does not support GUI apps, so we need to install it on Windows. Not to worry, you'll still be able

to integrate with your Linux command line and tools using the Remote - WSL Extension.

2. Install the Remote - WSL Extension on VS Code. This allows you to use WSL as your integrated

development environment and will handle compatibility and pathing for you. Learn more.

If you already have VS Code installed, you need to ensure that you have the 1.35 May release or later in order to install

the Remote - WSL Extension. We do not recommend using WSL in VS Code without the Remote-WSL extension as you

will lose support for auto-complete, debugging, linting, etc. Fun fact: This WSL extension is installed in $HOME/.vscode-

server/extensions.

Let's create a new project directory on our Linux (Ubuntu) file system that we will then work on with Linux apps

and tools using VS Code.

1. Close VS Code and open Ubuntu 18.04 (your WSL command line) by going to your Star t menu (lower

left Windows icon) and typing: "Ubuntu 18.04".

2. In your Ubuntu command line, navigate to where you want to put your project, and create a directory for

it: mkdir HelloWorld .

An important thing to remember when using Windows Subsystem for Linux (WSL) is that you are now working

between two different file systems: 1) your Windows file system, and 2) your Linux file system (WSL), which is

Ubuntu for our example. You will need to pay attention to where you install packages and store files. You can install one

version of a tool or package in the Windows file system and a completely different version in the Linux file system.

Updating the tool in the Windows file system will have no effect on the tool in the Linux file system, and vice-versa. WSL

mounts the fixed drives on your computer under the /mnt/<drive> folder in your Linux distribution. For example, your

Windows C: drive is mounted under /mnt/c/ . You can access your Windows files from the Ubuntu terminal and use

Linux apps and tools on those files and vice-versa. We recommend working in the Linux file system for Python web

development given that much of the web tooling is originally written for Linux and deployed in a Linux production

environment. It also avoids mixing file system semantics (like Windows being case-insensitive regarding file names). That

said, WSL now supports jumping between the Linux and Windows files systems, so you can host your files on either one.

Learn more.

Ubuntu 18.04 LTS comes with Python 3.6 already installed, but it does not come with some of the modules that

you may expect to get with other Python installations. We will still need to install pip, the standard package

manager for Python, and venv , the standard module used to create and manage lightweight virtual

environments.

https://code.visualstudio.com/docs/editor/versioncontrol#_git-support
https://code.visualstudio.com
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-wsl
https://code.visualstudio.com/docs/remote/remote-overview
https://code.visualstudio.com/updates/v1_35
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-wsl
https://devblogs.microsoft.com/commandline/do-not-change-linux-files-using-windows-apps-and-tools/

 Create a virtual environment

TIP

 Open a WSL - Remote window

1. Confirm that Python3 is already installed by opening your Ubuntu terminal and entering:

python3 --version . This should return your Python version number. If you need to update your version of

Python, first update your Ubuntu version by entering: sudo apt update && sudo apt upgrade , then update

Python using sudo apt upgrade python3 .

2. Install pip by entering: sudo apt install python3-pip . Pip allows you to install and manage additional

packages that are not part of the Python standard library.

3. Install venv by entering: sudo apt install python3-venv .

Using virtual environments is a recommended best practice for Python development projects. By creating a

virtual environment, you can isolate your project tools and avoid versioning conflicts with tools for your other

projects. For example, you may be maintaining an an older web project that requires the Django 1.2 web

framework, but then an exciting new project comes along using Django 2.2. If you update Django globally,

outside of a virtual environment, you could run into some versioning issues later on. In addition to preventing

accidental versioning conflicts, virtual environments let you install and manage packages without administrative

privileges.

1. Open your terminal and, inside your HelloWorld project folder, use the following command to create a

virtual environment named .venv : python3 -m venv .venv .

2. To activate the virtual environment, enter : source .venv/bin/activate . If it worked, you should see

(.venv) before the command prompt. You now have a self-contained environment ready for writing code

and installing packages. When you're finished with your virtual environment, enter the following

command to deactivate it: deactivate .

We recommend creating the virtual environment inside the directory in which you plan to have your project. Since each

project should have its own separate directory, each will have its own virtual environment, so there is not a need for

unique naming. Our suggestion is to use the name .venv to follow the Python convention. Some tools (like pipenv) also

default to this name if you install into your project directory. You don't want to use .env as that conflicts with

environment variable definition files. We generally do not recommend non-dot-leading names, as you don't need ls

constantly reminding you that the directory exists. We also recommend adding .venv to your .gitignore file. (Here is

GitHub's default gitignore template for Python for reference.) For more information about working with virtual

environments in VS Code, see Using Python environments in VS Code.

VS Code uses the Remote - WSL Extension (installed previously) to treat your Linux subsystem as a remote

server. This allows you to use WSL as your integrated development environment. Learn more.

1. Open your project folder in VS Code from your Ubuntu terminal by entering: code . (the "." tells VS

Code to open the current folder).

2. A Security Alert will pop-up from Windows Defender, select "Allow access". Once VS Code opens, you

should see the Remote Connection Host indicator, in the bottom-left corner, letting you know that you are

https://github.com/github/gitignore/blob/50e42aa1064d004a5c99eaa72a2d8054a0d8de55/Python.gitignore#L99-L106
https://code.visualstudio.com/docs/python/environments
https://code.visualstudio.com/docs/remote/wsl

 Install the Microsoft Python extension

 Run a simple Python program

editing on WSL: Ubuntu-18.04 .

3. Close your Ubuntu terminal. Moving forward we will use the WSL terminal integrated into VS Code.

4. Open the WSL terminal in VS Code by pressing Ctr l+` (using the backtick character) or selecting View >

Terminal . This will open a bash (WSL) command-line opened to the project folder path that you created

in your Ubuntu terminal.

You will need to install any VS Code extensions for your Remote - WSL. Extensions already installed locally on

VS Code will not automatically be available. Learn more.

1. Open the VS Code Extensions window by entering Ctr l+Shift+X (or use the menu to navigate to View >

Extensions).

2. In the top Search Extensions in Marketplace box, enter : Python.

3. Find the Python (ms-python.python) by Microsoft extension and select the green Install button.

4. Once the extension is finished installing, you will need to select the blue Reload Required button. This

will reload VS Code and display a WSL: UBUNTU-18.04 - Installed section in your VS Code Extensions

window showing that you've installed the Python extension.

Python is an interpreted language and supports different types of interpretors (Python2, Anaconda, PyPy, etc).

VS Code should default to the interpreter associated with your project. If you have a reason to change it, select

the interpreter currently displayed in blue bar on the bottom of your VS Code window or open the Command

Palette (Ctrl+Shift+P) and enter the command Python: Select Interpreter . This will display a list of the

Python interpreters that you currently have installed. Learn more about configuring Python environments.

Let's create and run a simple Python program as a test and ensure that we have the correct Python interpreter

selected.

1. Open the VS Code File Explorer window by entering Ctr l+Shift+E (or use the menu to navigate to View

> Explorer).

2. If it's not already open, open your integrated WSL terminal by entering Ctr l+Shift+` and ensure that

https://code.visualstudio.com/docs/remote/wsl#_managing-extensions
https://code.visualstudio.com/docs/python/environments

 Hello World tutorial for Flask

print("Hello World")

your HelloWorld python project folder is selected.

3. Create a python file by entering: touch test.py . You should see the file you just created appear in your

Explorer window under the .venv and .vscode folders already in your project directory.

4. Select the test.py file that you just created in your Explorer window to open it in VS Code. Because the

.py in our file name tells VS Code that this is a Python file, the Python extension you loaded previously

will automatically choose and load a Python interpreter that you will see displayed on the bottom of your

VS Code window.

5. Paste this Python code into your test.py file and then save the file (Ctrl+S):

6. To run the Python "Hello World" program that we just created, select the test.py file in the VS Code

Explorer window, then right-click the file to display a menu of options. Select Run Python File in

Terminal . Alternatively, in your integrated WSL terminal window, enter : python test.py to run your

"Hello World" program. The Python interpreter will print "Hello World" in your terminal window.

Congratulations. You're all set up to create and run Python programs! Now let's try creating a Hello World app

with two of the most popular Python web frameworks: Flask and Django.

Flask is a web application framework for Python. In this brief tutorial, you'll create a small "Hello World" Flask

app using VS Code and WSL.

1. Open Ubuntu 18.04 (your WSL command line) by going to your Star t menu (lower left Windows icon)

and typing: "Ubuntu 18.04".

2. Create a directory for your project: mkdir HelloWorld-Flask , then cd HelloWorld-Flask to enter the

directory.

3. Create a virtual environment to install your project tools: python3 -m venv .venv

4. Open your HelloWorld-Flask project in VS Code by entering the command: code .

5. Inside VS Code, open your integrated WSL terminal (aka Bash) by entering Ctr l+Shift+` (your

HelloWorld-Flask project folder should already be selected). Close your Ubuntu command line as we

will be working in the WSL terminal integrated with VS Code moving forward.

6. Activate the virtual environment that you created in step #3 using your Bash terminal in VS Code:

source .venv/bin/activate . If it worked, you should see (.venv) before the command prompt.

7. Install Flask in the virtual environment by entering: python3 -m pip install flask . Verify that it's installed

by entering: python3 -m flask --version .

8. Create a new file for your Python code: touch app.py

9. Open your app.py file in VS Code's File Explorer (Ctrl+Shift+E , then select your app.py file). This will

activate the Python Extension to choose an interpreter. It should default to Python 3.6 .8 64-bit (' .venv' :

venv) . Notice that it also detected your virtual environment.

http://flask.pocoo.org/

from flask import Flask
app = Flask(__name__)

@app.route("/")
def home():
 return "Hello World! I'm using Flask."

TIP

python3 -m flask run

(env) user@USER:/mnt/c/Projects/HelloWorld$ python3 -m flask run
 * Environment: production
 WARNING: This is a development server. Do not use it in a production deployment.
 Use a production WSGI server instead.
 * Debug mode: off
 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

127.0.0.1 - - [19/Jun/2019 13:36:56] "GET / HTTP/1.1" 200 -

10. In app.py , add code to import Flask and create an instance of the Flask object:

11. Also in app.py , add a function that returns content, in this case a simple string. Use Flask's app.route

decorator to map the URL route "/" to that function:

You can use multiple decorators on the same function, one per line, depending on how many different routes you

want to map to the same function.

12. Save the app.py file (Ctr l+S).

13. In the terminal, run the app by entering the following command:

This runs the Flask development server. The development server looks for app.py by default. When you

run Flask, you should see output similar to the following:

14. Open your default web browser to the rendered page, Ctr l+Click the http://127.0.0.1:5000/ URL in the

terminal. You should see the following message in your browser :

15. Observe that when you visit a URL like "/", a message appears in the debug terminal showing the HTTP

request:

16. Stop the app by using Ctr l+C in the terminal.

http://127.0.0.1:5000/

TIP

 Hello World tutorial for Django

If you want to use a different filename than app.py , such as program.py , define an environment variable named

FL ASK_APP and set its value to your chosen file. Flask's development server then uses the value of FL ASK_APP instead

of the default file app.py . For more information, see Flask's Command Line Interface documentation.

Congratulations, you've created a Flask web application using Visual Studio Code and Windows Subsystem for

Linux! For a more in-depth tutorial using VS Code and Flask, see Flask Tutorial in Visual Studio Code.

Django is a web application framework for Python. In this brief tutorial, you'll create a small "Hello World"

Django app using VS Code and WSL.

django-admin startproject web_project .

1. Open Ubuntu 18.04 (your WSL command line) by going to your Star t menu (lower left Windows icon)

and typing: "Ubuntu 18.04".

2. Create a directory for your project: mkdir HelloWorld-Django , then cd HelloWorld-Django to enter the

directory.

3. Create a virtual environment to install your project tools: python3 -m venv .venv

4. Open your HelloWorld-DJango project in VS Code by entering the command: code .

5. Inside VS Code, open your integrated WSL terminal (aka Bash) by entering Ctr l+Shift+` (your

HelloWorld-Django project folder should already be selected). Close your Ubuntu command line as we

will be working in the WSL terminal integrated with VS Code moving forward.

6. Activate the virtual environment that you created in step #3 using your Bash terminal in VS Code:

source .venv/bin/activate . If it worked, you should see (.venv) before the command prompt.

7. Install Django in the virtual environment with the command: python3 -m pip install django . Verify that

it's installed by entering: python3 -m django --version .

8. Next, run the following command to create the Django project:

The startproject command assumes (by use of . at the end) that the current folder is your project

folder, and creates the following within it:

manage.py : The Django command-line administrative utility for the project. You run administrative

commands for the project using python manage.py <command> [options] .

A subfolder named web_project , which contains the following files:

__init__.py : an empty file that tells Python that this folder is a Python package.

wsgi.py : an entry point for WSGI-compatible web servers to serve your project. You typically

leave this file as-is as it provides the hooks for production web servers.

settings.py : contains settings for Django project, which you modify in the course of

developing a web app.

urls.py : contains a table of contents for the Django project, which you also modify in the

course of development.

9. To verify the Django project, start Django's development server using the command

python3 manage.py runserver . The server runs on the default port 8000, and you should see output like

http://flask.pocoo.org/docs/1.0/cli/
https://code.visualstudio.com/docs/python/tutorial-flask
https://www.djangoproject.com

Performing system checks...

System check identified no issues (0 silenced).

June 20, 2019 - 22:57:59
Django version 2.2.2, using settings 'web_project.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

python3 manage.py startapp hello

from django.http import HttpResponse

def home(request):
 return HttpResponse("Hello, Django!")

the following output in the terminal window:

When you run the server the first time, it creates a default SQLite database in the file db.sqlite3 , which

is intended for development purposes, but can be used in production for low-volume web apps. Also,

Django's built-in web server is intended only for local development purposes. When you deploy to a web

host, however, Django uses the host's web server instead. The wsgi.py module in the Django project

takes care of hooking into the production servers.

If you want to use a different port than the default 8000, specify the port number on the command line,

such as python3 manage.py runserver 5000 .

10. Ctrl+click the http://127.0.0.1:8000/ URL in the terminal output window to open your default

browser to that address. If Django is installed correctly and the project is valid, you'll see a default page.

The VS Code terminal output window also shows the server log.

11. When you're done, close the browser window and stop the server in VS Code using Ctrl+C as indicated

in the terminal output window.

12. Now, to create a Django app, run the administrative utility's startapp command in your project folder

(where manage.py resides):

The command creates a folder called hello that contains a number of code files and one subfolder. Of

these, you frequently work with views.py (that contains the functions that define pages in your web app)

and models.py (that contains classes defining your data objects). The migrations folder is used by

Django's administrative utility to manage database versions as discussed later in this tutorial. There are

also the files apps.py (app configuration), admin.py (for creating an administrative interface), and

tests.py (for tests), which are not covered here.

13. Modify hello/views.py to match the following code, which creates a single view for the app's home

page:

14. Create a file, hello/urls.py , with the contents below. The urls.py file is where you specify patterns to

route different URLs to their appropriate views. The code below contains one route to map root URL of

the app ("") to the views.home function that you just added to hello/views.py :

 Additional resources

from django.urls import path
from hello import views

urlpatterns = [
 path("", views.home, name="home"),
]

from django.contrib import admin
from django.urls import include, path

urlpatterns = [
 path("", include("hello.urls")),
]

15. The web_project folder also contains a urls.py file, which is where URL routing is actually handled.

Open web_project/urls.py and modify it to match the following code (you can retain the instructive

comments if you like). This code pulls in the app's hello/urls.py using django.urls.include , which

keeps the app's routes contained within the app. This separation is helpful when a project contains

multiple apps.

16. Save all modified files.

17. In the VS Code Terminal, run the development server with python3 manage.py runserver and open a

browser to http://127.0.0.1:8000/ to see a page that renders "Hello, Django".

Congratulations, you've created a Django web application using VS Code and Windows Subsystem for Linux!

For a more in-depth tutorial using VS Code and Django, see Django Tutorial in Visual Studio Code.

Python Tutorial with VS Code: An intro tutorial to VS Code as a Python environment, primarily how to edit,

run, and debug code.

Git support in VS Code: Learn how to use Git version control basics in VS Code.

Learn about updates coming soon with WSL 2!: This new version changes how Linux distributions interact

with Windows, increasing file system performance and adding full system call compatibility.

Working with multiple Linux distributions on Windows: Learn how to manage multiple different Linux

distributions on your Windows machine.

https://code.visualstudio.com/docs/python/tutorial-django
https://code.visualstudio.com/docs/python/python-tutorial
https://code.visualstudio.com/docs/editor/versioncontrol#_git-support
https://docs.microsoft.com/en-us/windows/wsl/wsl2-index
https://docs.microsoft.com/en-us/windows/wsl/wsl-config

Get started using Python on Windows for scripting
and automation

 5/25/2021 • 9 minutes to read • Edit Online

NOTE

 Set up your development environment

 Install Python

The following is a step-by-step guide for setting up your developer environment and getting you started using

Python for scripting and automating file system operations on Windows.

This article will cover setting up your environment to use some of the helpful libraries in Python that can automate tasks

across platforms, like searching your file system, accessing the internet, parsing file types, etc., from a Windows-centered

approach. For Windows-specific operations, check out ctypes, a C-compatible foreign function library for Python, winreg,

functions exposing the Windows registry API to Python, and Python/WinRT, enabling access Windows Runtime APIs from

Python.

When using Python to write scripts that perform file system operations, we recommend you install Python from

the Microsoft Store. Installing via the Microsoft Store uses the basic Python3 interpreter, but handles set up of

your PATH settings for the current user (avoiding the need for admin access), in addition to providing automatic

updates.

If you are using Python for web development on Windows, we recommend a different setup using the

Windows Subsystem for Linux. Find a walkthrough in our guide: Get started using Python for web development

on Windows. If you're brand new to Python, try our guide: Get started using Python on Windows for beginners.

For some advanced scenarios (like needing to access/modify Python's installed files, make copies of binaries, or

use Python DLLs directly), you may want to consider downloading a specific Python release directly from

python.org or consider installing an alternative, such as Anaconda, Jython, PyPy, WinPython, IronPython, etc. We

only recommend this if you are a more advanced Python programmer with a specific reason for choosing an

alternative implementation.

To install Python using the Microsoft Store:

1. Go to your Star t menu (lower left Windows icon), type "Microsoft Store", select the link to open the store.

2. Once the store is open, select Search from the upper-right menu and enter "Python". Select which

version of Python you would like to use from the results under Apps. We recommend using the most

recent unless you have a reason not to (such as aligning with the version used on a pre-existing project

that you plan to work on). Once you've determined which version you would like to install, select Get.

3. Once Python has completed the downloading and installation process, open Windows PowerShell using

the Star t menu (lower left Windows icon). Once PowerShell is open, enter Python --version to confirm

that Python3 has been installed on your machine.

4. The Microsoft Store installation of Python includes pip, the standard package manager. Pip allows you to

install and manage additional packages that are not part of the Python standard library. To confirm that

you also have pip available to install and manage packages, enter pip --version .

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/python/scripting.md
https://docs.python.org/3/library/ctypes.html
https://docs.python.org/3/library/winreg.html
https://pypi.org/project/winrt/
https://www.microsoft.com/p/python-37/9nj46sx7x90p?activetab=pivot:overviewtab
https://www.python.org/downloads/
https://www.python.org/download/alternatives

Install Visual Studio Code

 Install the Microsoft Python extension

 Open the integrated PowerShell terminal in VS Code

By using VS Code as your text editor / integrated development environment (IDE), you can take advantage of

IntelliSense (a code completion aid), Linting (helps avoid making errors in your code), Debug support (helps you

find errors in your code after you run it), Code snippets (templates for small reusable code blocks), and Unit

testing (testing your code's interface with different types of input).

Download VS Code for Windows and follow the installation instructions: https://code.visualstudio.com.

You will need to install the Microsoft Python extension in order to take advantage of the VS Code support

features. Learn more.

1. Open the VS Code Extensions window by entering Ctr l+Shift+X (or use the menu to navigate to View >

Extensions).

2. In the top Search Extensions in Marketplace box, enter : Python.

3. Find the Python (ms-python.python) by Microsoft extension and select the green Install button.

VS Code contains a built-in terminal that enables you to open a Python command line with PowerShell,

establishing a seamless workflow between your code editor and command line.

NOTE

1. Open the terminal in VS Code, select View > Terminal , or alternatively use the shortcut Ctr l+` (using

the backtick character).

The default terminal should be PowerShell, but if you need to change it, use Ctrl+Shift+P to enter the command

pallette. Enter Terminal: Select Default Shell and a list of terminal options will display containing PowerShell,

Command Prompt, WSL, etc. Select the one you'd like to use and enter Ctrl+Shift+` (using the backtick) to

create a new terminal.

2. Inside your VS Code terminal, open Python by entering: python

3. Try the Python interpreter out by entering: print("Hello World") . Python will return your statement

"Hello World".

4. To exit Python, you can enter exit() , quit() , or select Ctrl-Z.

https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/python/linting
https://code.visualstudio.com/docs/python/debugging
https://code.visualstudio.com/docs/editor/userdefinedsnippets
https://code.visualstudio.com/docs/python/unit-testing
https://code.visualstudio.com
https://code.visualstudio.com/docs/languages/python
https://code.visualstudio.com/docs/editor/integrated-terminal

Install Git (optional)

 Example script to display the structure of your file system directory

If you plan to collaborate with others on your Python code, or host your project on an open-source site (like

GitHub), VS Code supports version control with Git. The Source Control tab in VS Code tracks all of your

changes and has common Git commands (add, commit, push, pull) built right into the UI. You first need to install

Git to power the Source Control panel.

1. Download and install Git for Windows from the git-scm website.

2. An Install Wizard is included that will ask you a series of questions about settings for your Git installation.

We recommend using all of the default settings, unless you have a specific reason for changing

something.

3. If you've never worked with Git before, GitHub Guides can help you get started.

Common system administration tasks can take a huge amount of time, but with a Python script, you can

automate these tasks so that they take no time at all. For example, Python can read the contents of your

computer's file system and perform operations like printing an outline of your files and directories, moving

folders from one directory to another, or renaming hundreds of files. Normally, tasks like these could take up a

ton of time if you were to perform them manually. Use a Python script instead!

Let's begin with a simple script that walks a directory tree and displays the directory structure.

mkdir food, food\fruits, food\fruits\apples, food\fruits\oranges, food\vegetables

new-item food\fruits\banana.txt, food\fruits\strawberry.txt, food\fruits\blueberry.txt,
food\fruits\apples\honeycrisp.txt, food\fruits\oranges\mandarin.txt, food\vegetables\carrot.txt

mkdir src
new-item src\list-directory-contents.py

1. Open PowerShell using the Star t menu (lower left Windows icon).

2. Create a directory for your project: mkdir python-scripts , then open that directory: cd python-scripts .

3. Create a few directories to use with our example script:

4. Create a few files within those directories to use with our script:

5. Create a new python file in your python-scripts directory:

6. Open your project in VS Code by entering: code .

7. Open the VS Code File Explorer window by entering Ctr l+Shift+E (or use the menu to navigate to View

> Explorer) and select the list-directory-contents.py file that you just created. The Microsoft Python

extension will automatically load a Python interpreter. You can see which interpreter was loaded on the

bottom of your VS Code window.

https://code.visualstudio.com/docs/editor/versioncontrol#_git-support
https://git-scm.com/download/win
https://guides.github.com/

NOTE

import os

root = os.path.join('..', 'food')
for directory, subdir_list, file_list in os.walk(root):
 print('Directory:', directory)
 for name in subdir_list:
 print('Subdirectory:', name)
 for name in file_list:
 print('File:', name)
 print()

cd src

python3 .\list-directory-contents.py

Python is an interpreted language, meaning that it acts as a virtual machine, emulating a physical computer. There

are different types of Python interpreters that you can use: Python 2, Python 3, Anaconda, PyPy, etc. In order to

run Python code and get Python IntelliSense, you must tell VS Code which interpreter to use. We recommend

sticking with the interpreter that VS Code chooses by default (Python 3 in our case) unless you have a specific

reason for choosing something different. To change the Python interpreter, select the interpreter currently

displayed in blue bar on the bottom of your VS Code window or open the Command Palette (Ctrl+Shift+P) and

enter the command Python: Select Interpreter . This will display a list of the Python interpreters that you

currently have installed. Learn more about configuring Python environments.

8. Paste the following code into your list-directory-contents.py file and then select save:

9. Open the VS Code integrated terminal (Ctr l+` , using the backtick character) and enter the src directory

where you just saved your Python script:

10. Run the script in PowerShell with:

You should see output that looks like this:

https://code.visualstudio.com/docs/python/environments

NOTE

 Example script to modify all files in a directory

Directory: ..\food
Subdirectory: fruits
Subdirectory: vegetables

Directory: ..\food\fruits
Subdirectory: apples
Subdirectory: oranges
File: banana.txt
File: blueberry.txt
File: strawberry.txt

Directory: ..\food\fruits\apples
File: honeycrisp.txt

Directory: ..\food\fruits\oranges
File: mandarin.txt

Directory: ..\food\vegetables
File: carrot.txt

11. Use Python to print that file system directory output to it's own text file by entering this command

directly in your PowerShell terminal: python3 list-directory-contents.py > food-directory.txt

Congratulations! You've just written an automated systems administration script that reads the directory and

files you created and uses Python to display, and then print, the directory structure to it's own text file.

If you're unable to install Python 3 from the Microsoft Store, see this issue for an example of how to handle the pathing

for this sample script.

This example uses the files and directories you just created, renaming each of the files by adding the file's last

modified date to the beginning of the filename.

new-item update-filenames.py

NOTE

1. Inside the src folder in your python-scr ipts directory, create a new Python file for your script:

2. Open the update-filenames.py file, paste the following code into the file, and save it:

os.getmtime returns a timestamp in ticks, which is not easily readable. It must be converted to a standard

datetime string first.

https://github.com/MicrosoftDocs/windows-uwp/issues/2901

 Additional resources

import datetime
import os

root = os.path.join('..', 'food')
for directory, subdir_list, file_list in os.walk(root):
 for name in file_list:
 source_name = os.path.join(directory, name)
 timestamp = os.path.getmtime(source_name)
 modified_date = str(datetime.datetime.fromtimestamp(timestamp)).replace(':', '.')
 target_name = os.path.join(directory, f'{modified_date}_{name}')

 print(f'Renaming: {source_name} to: {target_name}')

 os.rename(source_name, target_name)

Renaming: ..\food\fruits\banana.txt to: ..\food\fruits\2019-07-18 12.24.46.385185_banana.txt
Renaming: ..\food\fruits\blueberry.txt to: ..\food\fruits\2019-07-18 12.24.46.391170_blueberry.txt
Renaming: ..\food\fruits\strawberry.txt to: ..\food\fruits\2019-07-18 12.24.46.389174_strawberry.txt
Renaming: ..\food\fruits\apples\honeycrisp.txt to: ..\food\fruits\apples\2019-07-18
12.24.46.395160_honeycrisp.txt
Renaming: ..\food\fruits\oranges\mandarin.txt to: ..\food\fruits\oranges\2019-07-18
12.24.46.398151_mandarin.txt
Renaming: ..\food\vegetables\carrot.txt to: ..\food\vegetables\2019-07-18 12.24.46.402496_carrot.txt

PS C:\src\python-scripting\src> python3 .\list-directory-contents.py
..\food\
Directory: ..\food
Subdirectory: fruits
Subdirectory: vegetables

Directory: ..\food\fruits
Subdirectory: apples
Subdirectory: oranges
File: 2019-07-18 12.24.46.385185_banana.txt
File: 2019-07-18 12.24.46.389174_strawberry.txt
File: 2019-07-18 12.24.46.391170_blueberry.txt

Directory: ..\food\fruits\apples
File: 2019-07-18 12.24.46.395160_honeycrisp.txt

Directory: ..\food\fruits\oranges
File: 2019-07-18 12.24.46.398151_mandarin.txt

Directory: ..\food\vegetables
File: 2019-07-18 12.24.46.402496_carrot.txt

3. Test your update-filenames.py script by running it: python3 update-filenames.py and then running your

list-directory-contents.py script again: python3 list-directory-contents.py

4. You should see output that looks like this:

5. Use Python to print the new file system directory names with the last-modified timestamp prepended to

it's own text file by entering this command directly in your PowerShell terminal:

python3 list-directory-contents.py > food-directory-last-modified.txt

Hope you learned a few fun things about using Python scripts for automating basic systems administration

tasks. There is, of course, a ton more to know, but we hope this got you started on the right foot. We've shared a

few additional resources to continue learning below.

Python Docs: File and Directory Access: Python documentation about working with file systems and using

modules for reading the properties of files, manipulating paths in a portable way, and creating temporary

files.

Learn Python: String_Formatting tutorial: More about using the "%" operator for string formatting.

10 Python File System Methods You Should Know: Medium article about manipulating files and folders With

os and shutil .

The Hitchhikers Guide to Python: Systems Administration: An "opinionated guide" that offers overviews and

best practices on topics related to Python. This section covers System Admin tools and frameworks. This

guide is hosted on GitHub so you can file issues and make contributions.

https://docs.python.org/3.7/library/filesys.html
https://www.learnpython.org/en/String_Formatting
https://towardsdatascience.com/10-python-file-system-methods-you-should-know-799f90ef13c2
https://docs.python-guide.org/scenarios/admin/

Overview of Android development on Windows
 5/13/2021 • 4 minutes to read • Edit Online

 Native Android

 Cross-platform

There are multiple paths for developing an Android device app using the Windows operating system. These

paths fall into three main types: Native Android development, Cross-platform development, and

Android game development. This overview will help you decide which development path to follow for

developing an Android app and then provide next steps to help you get started using Windows to develop with:

Native Android

Xamarin.Android

Xamarin.Forms

React Native

Cordova, Ionic, or PhoneGap

C/C++ for game development

In addition, this guide will provide tips on using Windows to:

Test on an Android device or emulator

Update Windows Defender settings to improve performance

Develop dual-screen apps for Android and get the Surface Duo device SDK

Native Android development on Windows means that your app is targeting only Android (not iOS or Windows

devices). You can use Android Studio or Visual Studio to develop within the ecosystem designed specifically for

the Android operating system. Performance will be optimized for Android devices, the user-interface look and

feel will be consistent with other native apps on the device, and any features or capabilities of the user's device

will be straight-forward to access and utilize. Developing your app in a native format will help it to just 'feel

right' because it follows all of the interaction patterns and user experience standards established specifically for

Android devices.

Cross-platform frameworks provide a single codebase that can (mostly) be shared between Android, iOS, and

Windows devices. Using a cross-platform framework can help your app to maintain the same look, feel, and

experience across device platforms, as well as benefiting from the automatic rollout of updates and fixes. Instead

of needing to understand a variety of device-specific code languages, the app is developed in a shared codebase,

typically in one language.

While cross-platform frameworks aim to look and feel as close to native apps as possible, they will never be as

seamlessly integrated as a natively developed app and may suffer from reduced speed and degraded

performance. Additionally, the tools used to build cross-platform apps may not have all of the features offered

by each different device platform, potentially requiring workarounds.

A codebase is typically made up of UI code, for creating the user interface like pages, buttons controls, labels,

lists, etc., and logic code, for calling web services, accessing a database, invoking hardware capabilities and

managing state. On average, 90% of this can be reused, though there is typically some need to customize code

for each device platform. This generalization largely depends on the type of app you're building, but provides a

bit of context that hopefully will help with your decision-making.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/android/overview.md
https://docs.microsoft.com/en-us/dual-screen/android/
https://developer.android.com/studio/install#windows
https://visualstudio.microsoft.com/vs/android/

Choosing a cross-platform framework

 Game development

Xamarin Native (Xamarin.Android)

UI code: XML with Android Designer, and Material Theme

Logic code: C# or F#

Still able to tap into some native Android elements, but good for reuse of the code base for other platforms

(iOS, Windows).

Only logic code is shared across platforms, not UI code.

Great for more complex apps with a device-specific user interface.

Xamarin Forms (Xamarin.Forms)

UI code: XAML and .NET (with Visual Studio)

Logic code: C#

Shares around 60–90% of the logic and UI code across Android, iOS, and Windows device apps.

Uses common user controls like Button, Label, Entry, ListView, StackLayout, Calendar, TabbedPage, etc. Create

a Button and Xamarin Forms will figure out how to call the native button for each platform using the Binding

Library to call Java or Swift code from C#.

Great for simple apps, like internal or Line Of Business (LOB) apps, prototypes or MVPs. Any app that can

look somewhat standard or generic, utilizing a simple user interface.

React Native

UI code: JavaScript

Logic code: JavaScript

The goal of React Native isn't to write the code once and run it on any platform, rather to learn-once (the

React way) and write-anywhere.

The community has added tools such as Expo and Create React Native App to help those wanting to build

apps without using Xcode or Android Studio.

Similar to Xamarin (C#), React Native (JavaScript) calls native UI elements (without the need for writing

Java/Kotlin or Swift).

Progressive Web Apps (PWAs)

UI code: HTML, CSS, JavaScript

Logic code: JavaScript

PWAs are web apps built with standard patterns to allow them to take advantage of both web and native app

features. They can be built without a framework, but a couple of popular frameworks to consider are Ionic

and PhoneGap.

PWAs can be installed on a device (Android, iOS, or Windows) and can work offline thanks to the

incorporation of a service-worker.

PWAs can be distributed and installed without an app store using only a web URL. The Microsoft Store and

Google Play Store allow PWAs to be listed, the Apple Store currently does not, though they can still be

installed on any iOS device running 12.2 or later.

To learn more, check out this introduction to PWAs on MDN.

Game development for Android is often unique from developing a standard Android app since games typically

use custom rendering logic, often written in OpenGL or Vulkan. For this reason, and because of the many C

libraries available that support game development, it's common for developers to use C/C++ with Visual Studio,

along with the Android Native Development Kit (NDK), to create games for Android. Get started with C/C++ for

https://ionicframework.com/docs/intro
https://phonegap.com/about/
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Introduction
https://docs.microsoft.com/en-us/cpp/cross-platform/
https://docs.microsoft.com/en-us/cpp/cross-platform/create-an-android-native-activity-app

 Next steps

game development.

Another common path for developing games for Android is to use a game engine. There are many free and

open-source engines available, such as Unity with Visual Studio, Unreal Engine, MonoGame with Xamarin,

UrhoSharp with Xamarin, SkiaSharp with Xamarin.Forms CocoonJS, App Game Kit, Fusion, Corona SDK, Cocos

2d, and more.

Get started with native Android development on Windows

Get started developing for Android using Xamarin.Android

Get started developing for Android using Xamarin.Forms

Get started developing for Android using React Native

Get started developing a PWA for Android

Develop Dual-screen apps for Android and get the Surface Duo device SDK

Add Windows Defender exclusions to improve performance

Enable Virtualization support to improve emulator performance

https://docs.microsoft.com/en-us/visualstudio/cross-platform/visual-studio-tools-for-unity
https://docs.unrealengine.com/en-US/Platforms/Mobile/Android/GettingStarted/index.html
https://docs.microsoft.com/en-us/xamarin/graphics-games/monogame/introduction/
https://docs.microsoft.com/en-us/xamarin/graphics-games/urhosharp/introduction
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/graphics/skiasharp/
https://docs.microsoft.com/en-us/dual-screen/android/

Get started with native Android development on
Windows

 7/14/2021 • 8 minutes to read • Edit Online

 Install Android Studio

 Create a new project

This guide will get you started using Windows to create native Android applications. If you would prefer a cross-

platform solution, see Overview of Android development on Windows for a brief summary of some options.

The most straight-forward way to create a native Android app is using Android Studio with either Java or Kotlin,

though it is also possible to use C or C++ for Android development if you have a specific purpose. The Android

Studio SDK tools compile your code, data, and resource files into an archive Android package, .apk file. One APK

file contains all the contents of an Android app and is the file that Android-powered devices use to install the

app.

Android Studio is the official integrated development environment for Google's Android operating system.

Download the latest version of Android Studio for Windows.

If you downloaded an .exe file (recommended), double-click to launch it.

If you downloaded a .zip file, unpack the ZIP, copy the android-studio folder into your Program Files folder,

and then open the android-studio > bin folder and launch studio64.exe (for 64-bit machines) or studio.exe

(for 32-bit machines).

Follow the setup wizard in Android Studio and install any SDK packages that it recommends. As new tools and

other APIs become available, Android Studio will notify you with a pop-up, or check for updates by selecting

Help > Check for Update.

Select File > New > New Project.

In the Choose your project window, you will be able to choose between these templates:

Basic Activity : Creates a simple app with an app bar, a floating action button and two layout files: one

for the activity and one to separate out text content.

Empty Activity : Creates an empty activity and a single layout file with sample text content.

Bottom Navigation Activity : Creates a standard bottom navigation bar for an activity. For more

information on this, see the Bottom Navigation Component section of the Material Design guidelines by

Google.

Templates are commonly used to add activities to new and existing app modules. For example, to create a

login screen for your app's users, add an activity with the Login Activity template. To learn more about

selecting an activity and how to add code from a template, see Android Developer guide by Google.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/android/native-android.md
https://developer.android.com/studio
https://material.io/guidelines/components/bottom-navigation.html
https://developer.android.com/studio/projects/templates#SelectTemplate

NOTE

 Java or Kotlin

 Minimum API Level

The Android operating system is based on the idea of components and uses the terms activity and intent to define

interactions. An activity represents a single, focused task that a user can do. An activity provides a window for building

the user interface using classes based on the View class. There is a lifecycle for activities in the Android operating

system, defined by six callbacks: onCreate() , onStart() , onResume() , onPause() , onStop() , and onDestroy() .

The activity components interact with one another using intent objects. Intent either defines the activity to start or

describes the type of action to perform (and the system selects the appropriate activity for you, which can even be from a

different application). Learn more about Activities, the Activity Lifecycle, and Intents in the Android Developer guide by

Google.

Java became a language in 1991, developed by what was then Sun Microsystems, but which is now owned by

Oracle. It has become one of the most popular and powerful programming languages with one of the largest

support communities in the world. Java is class-based and object-oriented, designed to have as few

implementation dependencies as possible. The syntax is similar to C and C++, but it has fewer low-level facilities

than either of them.

Kotlin was first announced as a new open-source language by JetBrains in 2011 and has been included as an

alternative to Java in Android Studio since 2017. In May 2019, Google announced Kotlin as it's preferred

language for Android app developers, so despite being a newer language, it also has a strong support

community and has been identified as one of the fastest growing programming languages. Kotlin is cross-

platform, statically typed, and designed to interoperate fully with Java.

Java is more widely used for a broader range of applications and offers some features that Kotlin does not, such

as checked exceptions, primitive types that are not classes, static members, non-private fields, wildcard-types,

and ternary-operators. Kotlin is specifically designed for and recommended by Android. It also offers some

features that Java does not, such as null references controlled by the type system, no raw types, invariant arrays,

proper function types (as opposed to Java's SAM-conversions), use-site variance without wildcards, smart casts,

and more. Find a more in-depth look at the comparison to Java in the Kotlin documentation.

You will need to decide the minimum API level for your application. This determines which version of Android

your application will support. Lower API levels are older and therefore generally support more devices, but

higher API levels are newer and therefor provide more features.

Select the Help me choose link to open a comparison chart showing the device support distribution and key

features associated with the platform version release.

https://developer.android.com/reference/android/app/Activity
https://kotlinlang.org/docs/reference/comparison-to-java.html

 Instant app support and Androidx artifacts

NOTE

 Project files

You may notice a checkbox to Suppor t instant apps and another to Use androidx ar tifacts in your project

creation options. The instant apps support is not checked and the androidx is checked as the recommended

default.

Google Play Instant apps provide a way for people to try an app or game without installing it first. These

instant apps can be surfaced across the Play Store, Google Search, social networks, and anywhere you share a

link. By checking the Suppor t instant apps box, you are asking Android Studio to include the Google Play

Instant Development SDK with your project. Learn more about Google Play Instant apps in the Android

developer guide.

AndroidX ar tifacts represents the new version of the Android support library and provides backwards-

compatibility across Android releases. AndroidX provides a consistent namespace starting with the string

androidx for all available packages.

AndroidX is now the default library. To uncheck this box and use the previous support library requires removing the

lastest Android Q SDK. See Uncheck use Androidx artifacts on StackOverflow for instructions, but first note that the

former Support Library packages have been mapped into corresponding androidx.* packages. For a full mapping of all the

old classes and build artifacts to the new ones, see Migrating to AndroidX.

The Android Studio Project window, contains the following files (be sure that the Android view is selected from

the drop-down menu):

app > java > com.example.myfirstapp > MainActivity

The main activity and entry point for your app. When you build and run your app, the system launches an

instance of this Activity and loads its layout.

app > res > layout > activity_main.xml

The XML file defining the layout for the activity's user interface (UI). It contains a TextView element with the text

"Hello World"

app > manifests > AndroidManifest.xml

The manifest file describing the fundamental characteristics of the app and each of its components.

Gradle Scr ipts > build.gradle

There are two files with this name: "Project: My First App", for the entire project, and "Module: app", for each app

module. A new project will initially only have one module. Use the module's build.file to control how the Gradle

https://developer.android.com/topic/google-play-instant
https://stackoverflow.com/questions/56580980/uncheck-use-androidx-artifacts
https://developer.android.com/jetpack/androidx/migrate

 Use C or C++ for Android game development

 Design guidelines

 Fluent Design System for Android

plugin builds your app. Learn more about how to configure your build in the Android developer guide.

The Android operating system is designed to support applications written in Java or Kotlin, benefiting from

tooling embedded in the system's architecture. Many system features, like Android UI and Intent handling, are

only exposed through Java interfaces. There are a few instances where you may want to use C or C++ code

via the Android Native Development Kit (NDK) despite some of the associated challenges. Game

development is an example, since games typically use custom rendering logic written in OpenGL or Vulkan and

benefit from a wealth of C libraries focused on game development. Using C or C++ might also help you squeeze

extra performance out of a device to achieve low latency or run computationally intensive applications, such as

physics simulations. The NDK is not appropriate for most novice Android programmers however. Unless

you have a specific purpose for using the NDK, we recommend sticking with Java, Kotlin, or one of the cross-

platform frameworks.

To create a new project with C/C++ support:

In the Choose your project section of the Android Studio wizard, select the Native C++* project type.

Select Next, complete the remaining fields, then select Next again.

In the Customize C++ Suppor t section of the wizard, you can customize your project with the C++

Standard field. Use the drop-down list to select which standardization of C++ you want to use. Selecting

Toolchain Default uses the default CMake setting. Select Finish .

Once Android Studio creates your new project, you can find a cpp folder in the Project pane that

contains the native source files, headers, build scripts for CMake or ndk-build, and prebuilt libraries that

are a part of your project. You can also find a sample C++ source file, native-lib.cpp , in the

src/main/cpp/ folder which provides a simple stringFromJNI() function returning the string "Hello from

C++". Additionally, you should see a CMake build script, CMakeLists.txt , in your module's root directory

required for building your native library.

To learn more, about adding C and C++ code to your project, see the Android developer guide. To find Android

NDK samples with C++ integration, see the Android NDK samples repo on GitHub. To compile and run a C++

game on Android, use the Google Play Game services API.

Device users expect applications to look and behave a certain way... whether swiping or tapping or using voice-

controls, users will hold specific expectations for what your application should look like and how to use it. These

expectations should remain consistent in order to reduce confusion and frustration. Android offers a guide to

these platform and device expectations that combines the Google Material Design foundation for visual and

navigational patterns, along with quality guidelines for compatibility, performance, and security.

Learn more in the Android design documentation.

Microsoft also offers design guidance with the goal of providing a seamless experience across the entire

portfolio of Microsoft's mobile apps.

Fluent Design System for Android design and build custom apps that are natively Android while still uniquely

Fluent.

Sketch toolkit

Figma toolkit

Android font

Android User Interface Guidelines

https://developer.android.com/studio/build/index
https://developer.android.com/studio/projects/add-native-code
https://github.com/android/ndk-samples
https://developers.google.com/games/services/cpp/gettingStartedAndroid
https://developer.android.com/design
https://www.microsoft.com/design/fluent/#/android
https://aka.ms/fluenttoolkits/android/sketch
https://aka.ms/fluenttoolkits/android/figma
https://fonts.google.com/specimen/Roboto
https://developer.android.com/design/

 Additional resources

Guidelines for Android app icons

Android Application Fundamentals

Develop Dual-screen apps for Android and get the Surface Duo device SDK

Add Windows Defender exclusions to improve performance

Enable Virtualization support to improve emulator performance

https://developer.android.com/guide/practices/ui_guidelines/icon_design
https://developer.android.com/guide/components/fundamentals
https://docs.microsoft.com/en-us/dual-screen/android/

Get started developing for Android using
Xamarin.Android

 3/6/2021 • 4 minutes to read • Edit Online

 Requirements

NOTE

 Create a new Xamarin.Android project

 Create a UI with XAML

This guide will help you to get started using Xamarin.Android on Windows to create a cross-platform app that

will work on Android devices.

In this article, you will create a simple Android app using Xamarin.Android and Visual Studio 2019.

To use this tutorial, you'll need the following:

Windows 10

Visual Studio 2019: Community, Professional, or Enterprise (see note)

The "Mobile development with .NET" workload for Visual Studio 2019

This guide will work with Visual Studio 2017 or 2019. If you are using Visual Studio 2017, some instructions may be

incorrect due to UI differences between the two versions of Visual Studio.

You will also to have an Android phone or configured emulator in which to run your app. See Configuring an

Android emulator.

Start Visual Studio. Select File > New > Project to create a new project.

In the new project dialog, select the Android App (Xamarin) template and click Next.

Name the project TimeChangerAndroid and click Create.

In the New Cross Platform App dialog, select Blank App. In the Minimum Android Version, select Android

5.0 (Lollipop) . Click OK.

Xamarin will create a new solution with a single project named TimeChangerAndroid.

In the Resources\layout directory of your project, open activity_main.xml . The XML in this file defines the

first screen a user will see when opening TimeChanger.

TimeChanger's UI is simple. It displays the current time and has buttons to adjust the time in increments of one

hour. It uses a vertical LinearLayout to align the time above the buttons and a horizontal LinearLayout to

arrange the buttons side-by-side. The content is centered in the screen by setting android:gravity attribute to

center in the vertical LinearLayout .

Replace the contents of activity_main.xml with the following code.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/android/xamarin-android.md
https://visualstudio.microsoft.com/downloads/

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 android:gravity="center">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="At runtime, I will display current time"
 android:id="@+id/timeDisplay"
 />
 <LinearLayout
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Up"
 android:id="@+id/upButton"/>
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Down"
 android:id="@+id/downButton"/>
 </LinearLayout>
</LinearLayout>

 Add logic code with C#

 Set the current time

var timeDisplay = FindViewById<TextView>(Resource.Id.timeDisplay);

private void UpdateTimeLabel(object state = null)
{
 RunOnUiThread(() =>
 {
 TimeDisplay.Text = DateTime.Now.ToLongTimeString();
 });
}

 Update the current time once every second

At this point you can run TimeChangerAndroid and see the UI you've created. In the next section, you will add

functionality to your UI displaying the current time and enabling the buttons to perform an action.

Open MainActivity.cs . This file contains the code-behind logic that will add functionality to the UI.

First, get a reference to the TextView that will display the time. Use FindViewById to search all UI elements for

the one with the correct android:id (which was set to "@+id/timeDisplay" in the xml from the previous step).

This is the TextView that will display the current time.

UI controls must be updated on the UI thread. Changes made from another thread may not properly update the

control as it displays on the screen. Because there is no guarantee this code will always be running on the UI

thread, use the RunOnUiThread method to make sure any updates display correctly. Here is the complete

UpdateTimeLabel method.

var clockRefresh = new Timer(dueTime: 0, period: 1000, callback: UpdateTimeLabel, state: null);

 Add HourOffset

public int HourOffset { get; private set; }

TimeDisplay.Text = DateTime.Now.AddHours(HourOffset).ToLongTimeString();

 Create the button Click event handlers

public void UpButton_Click(object sender, System.EventArgs e)
{
 HourOffset++;
 UpdateTimeLabel();
}

 Wire up the up and down buttons to their corresponding event handlers

Button upButton = FindViewById<Button>(Resource.Id.upButton);
upButton.Click += UpButton_Click;

 Completed MainActivity.cs file

At this point, the current time will be accurate for, at most, one second after TimeChangerAndroid is launched.

The label must be periodically updated to keep the time accurate. A Timer object will periodically call a callback

method that updates the label with the current time.

The up and down buttons adjust the time in increments of one hour. Add an HourOffset property to track the

current adjustment.

Now update the UpdateTimeLabel method to be aware of the HourOffset property.

All the up and down buttons need to do is increment or decrement the HourOffset property and call

UpdateTimeLabel.

To associate the buttons with their corresponding event handlers, first use FindViewById to find the buttons by

their ids. Once you have a reference to the button object, you can add an event handler to its Click event.

When you're finished, MainActivity.cs should look like this:

using Android.App;
using Android.OS;
using Android.Support.V7.App;
using Android.Runtime;
using Android.Widget;
using System;
using System.Threading;

namespace TimeChangerAndroid
{
 [Activity(Label = "@string/app_name", Theme = "@style/AppTheme", MainLauncher = true)]
 public class MainActivity : AppCompatActivity
 {
 public TextView TimeDisplay { get; private set; }
 public int HourOffset { get; private set; }

 protected override void OnCreate(Bundle savedInstanceState)
 {
 base.OnCreate(savedInstanceState);

 // Set the view from the "main" layout resource
 SetContentView(Resource.Layout.activity_main);

 var clockRefresh = new Timer(dueTime: 0, period: 1000, callback: UpdateTimeLabel, state: null);

 Button upButton = FindViewById<Button>(Resource.Id.upButton);
 upButton.Click += OnUpButton_Click;

 Button downButton = FindViewById<Button>(Resource.Id.downButton);
 downButton.Click += OnDownButton_Click;

 TimeDisplay = FindViewById<TextView>(Resource.Id.timeDisplay);
 }

 private void UpdateTimeLabel(object state = null)
 {
 // Timer callbacks run on a background thread, but UI updates must run on the UI thread.
 RunOnUiThread(() =>
 {
 TimeDisplay.Text = DateTime.Now.AddHours(HourOffset).ToLongTimeString();
 });
 }

 public void OnUpButton_Click(object sender, System.EventArgs e)
 {
 HourOffset++;
 UpdateTimeLabel();
 }

 public void OnDownButton_Click(object sender, System.EventArgs e)
 {
 HourOffset--;
 UpdateTimeLabel();
 }
 }
}

 Run your app

 Related links

To run the app, press F5 or click Debug > Start Debugging. Depending on how your debugger is configured,

your app will launch on a device or in an emulator.

Test on an Android device or emulator.

Create an Android sample app using Xamarin.Forms

Get started developing for Android using
Xamarin.Forms

 3/6/2021 • 4 minutes to read • Edit Online

 Requirements

NOTE

 Create a new Xamarin.Forms project

 Create a UI with XAML

This guide will help you to get started using Xamarin.Forms on Windows to create a cross-platform app that will

work on Android devices.

In this article, you will create a simple Android app using Xamarin.Forms and Visual Studio 2019.

To use this tutorial, you'll need the following:

Windows 10

Visual Studio 2019: Community, Professional, or Enterprise (see note)

The "Mobile development with .NET" workload for Visual Studio 2019

This guide will work with Visual Studio 2017 or 2019. If you are using Visual Studio 2017, some instructions may be

incorrect due to UI differences between the two versions of Visual Studio.

You will also to have an Android phone or configured emulator in which to run your app. See Test on an Android

device or emulator.

Start Visual Studio. Click File > New > Project to create a new project.

In the new project dialog, select the Mobile App (Xamarin.Forms) template and click Next.

Name the project TimeChangerForms and click Create.

In the New Cross Platform App dialog, select Blank . In the Platform section, check Android and un-check all

other boxes. Click OK.

Xamarin will create a new solution with two projects: TimeChangerForms and

TimeChangerForms.Android.

Expand the TimeChangerForms project and open MainPage.xaml . The XAML in this file defines the first

screen a user will see when opening TimeChanger.

TimeChanger's UI is simple. It displays the current time, and has buttons to adjust the time in increments of one

hour. It uses a vertical StackLayout to align the time above the buttons, and a horizontal StackLayout to arrange

the buttons side-by-side. The content is centered in the screen by setting the vertical StackLayout's

HorizontalOptions and Ver ticalOptions to "CenterAndExpand".

Replace the contents of MainPage.xaml with the following code.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/android/xamarin-forms.md
https://visualstudio.microsoft.com/downloads/

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:d="http://xamarin.com/schemas/2014/forms/design"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 x:Class="TimeChangerForms.MainPage">

 <StackLayout HorizontalOptions="CenterAndExpand"
 VerticalOptions="CenterAndExpand">
 <Label x:Name="time"
 HorizontalOptions="CenterAndExpand"
 VerticalOptions="CenterAndExpand"
 Text="At runtime, this Label will display the current time.">
 </Label>
 <StackLayout Orientation="Horizontal">
 <Button HorizontalOptions="End"
 VerticalOptions="End"
 Text="Up"
 Clicked="OnUpButton_Clicked"/>
 <Button HorizontalOptions="Start"
 VerticalOptions="End"
 Text="Down"
 Clicked="OnDownButton_Clicked"/>
 </StackLayout>
 </StackLayout>
</ContentPage>

 Add logic code with C#

 Set the current time

private void UpdateTimeLabel(object state = null)
{
 Device.BeginInvokeOnMainThread(() =>
 {
 time.Text = DateTime.Now.ToLongTimeString();
 }
);
}

 Update the current time once every second

At this point, the UI is complete. TimeChangerForms, however, will not build because the methods

UpButton_Clicked and DownButton_Clicked are referenced in the XAML but not defined anywhere. Even if

the app did run, the current time would not be displayed. In the next section, you will fix these errors and add

functionality to your UI.

In the Solution Explorer, right click MainPage.xaml and click View Code. This file contains the code behind that

will add functionality to the UI.

Code in this file can reference controls declared in the XAML using the value of the control's x:Name attribute.

In this case the label that displays the current time is called time .

UI controls must be updated on the main thread. Changes made from another thread may not properly update

the control as it displays on the screen. Because there is no guarantee this code will always be running on the

main thread, use the BeginInvokeOnMainThread method to make sure any updates display correctly. Here is

the complete UpdateTimeLabel method.

At this point, the current time will be accurate for, at most, one second after TimeChangerForms is launched. The

label must be periodically updated to keep the time accurate. A Timer object will periodically call a callback

var clockRefresh = new Timer(dueTime: 0, period: 1000, callback: UpdateTimeLabel, state: null);

 Add HourOffset

public int HourOffset { get; private set; }

currentTime.Text = DateTime.Now.AddHours(HourOffset).ToLongTimeString();

 Add button Click event handlers

private void UpButton_Clicked(object sender, EventArgs e)
{
 HourOffset++;
 UpdateTimeLabel();
}

method that updates the label with the current time.

The up and down buttons adjust the time in increments of one hour. Add an HourOffset property to track the

current adjustment.

Now update the UpdateTimeLabel method to be aware of the HourOffset property.

All the up and down buttons need to do is increment or decrement the HourOffset property and call

UpdateTimeLabel.

When you're finished, MainPage.xaml.cs should look like this:

using System;
using System.ComponentModel;
using System.Threading;
using Xamarin.Forms;

namespace TimeChangerForms
{
 // Learn more about making custom code visible in the Xamarin.Forms previewer
 // by visiting https://aka.ms/xamarinforms-previewer
 [DesignTimeVisible(false)]
 public partial class MainPage : ContentPage
 {
 public int HourOffset { get; private set; }

 public MainPage()
 {
 InitializeComponent();
 }

 protected override void OnAppearing()
 {
 base.OnAppearing();
 var clockRefresh = new Timer(dueTime: 0, period: 1000, callback: UpdateTimeLabel, state: null);
 }

 private void UpdateTimeLabel(object state = null)
 {
 Device.BeginInvokeOnMainThread(() =>
 {
 time.Text = DateTime.Now.AddHours(HourOffset).ToLongTimeString();
 }
);
 }

 private void OnUpButton_Clicked(object sender, EventArgs e)
 {
 HourOffset++;
 UpdateTimeLabel();
 }

 private void OnDownButton_Clicked(object sender, EventArgs e)
 {
 HourOffset--;
 UpdateTimeLabel();
 }
 }
}

 Run the app

 Related links

To run the app, press F5 or click Debug > Start Debugging. Depending on how your debugger is configured,

your app will launch on a device or in an emulator.

Test on an Android device or emulator.

Create an Android sample app using Xamarin.Android

Get started developing for Android using React
Native

 4/21/2021 • 3 minutes to read • Edit Online

 Overview

 Get started with React Native by installing required tools

This guide will help you to get started using React Native on Windows to create a cross-platform app that will

work on Android devices.

React Native is an open-source mobile application framework created by Facebook. It is used to develop

applications for Android, iOS, Web and UWP (Windows) providing native UI controls and full access to the

native platform. Working with React Native requires an understanding of JavaScript fundamentals.

1. Install Visual Studio Code (or your code editor of choice).

2. Install Android Studio for Windows. Android Studio installs the latest Android SDK by default. React

Native requires Android 6.0 (Marshmallow) SDK or higher. We recommend using the latest SDK.

3. Create environment variable paths for the Java SDK and Android SDK:

In the Windows search menu, enter : "Edit the system environment variables", this will open the

System Proper ties window.

Choose Environment Variables... and then choose New... under User var iables .

Enter the Variable name and value (path). The default paths for the Java and Android SDKs are as

follows. If you've chosen a specific location to install the Java and Android SDKs, be sure to update the

variable paths accordingly.

JAVA_HOME: C:\Program Files\Android\Android Studio\jre\jre

ANDROID_HOME: C:\Users\username\AppData\Local\Android\Sdk

4. Install NodeJS for Windows You may want to consider using Node Version Manager (nvm) for Windows

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/javascript/react-native-for-android.md
https://github.com/facebook/react-native
https://code.visualstudio.com
https://developer.android.com/studio
https://nodejs.org/en/
https://github.com/coreybutler/nvm-windows#node-version-manager-nvm-for-windows

NOTE

 Create a new project with React Native

if you will be working with multiple projects and version of NodeJS. We recommend installing the latest

LTS version for new projects.

You may also want to consider installing and using the Windows Terminal for working with your preferred command-line

interface (CLI), as well as, Git for version control. The Java JDK comes packaged with Android Studio v2.2+, but if you need

to update your JDK separately from Android Studio, use the Windows x64 Installer.

npx react-native init MyReactNativeApp

cd MyReactNativeApp

npx react-native run-android

1. Use npx, the package runner tool that is installed with npm to create a new React Native project. from the

Windows Command Prompt, PowerShell, Windows Terminal, or the integrated terminal in VS Code (View

> Integrated Terminal).

2. Open your new "MyReactNativeApp" directory:

3. If you want to run your project on a hardware Android device, connect the device to your computer with

a USB cable.

4. If you want to run your project on an Android emulator, you shouldn't need to take any action as Android

Studio installs with a default emulator installed. If you want to run your app on the emulator for a

particular device. Click on the AVD Manager button in the toolbar.

.

5. To run your project, enter the following command. This will open a new console window displaying Node

Metro Bundler.

https://www.microsoft.com/p/windows-terminal-preview/9n0dx20hk701?activetab=pivot:overviewtab
https://git-scm.com/downloads
https://www.oracle.com/java/technologies/javase-downloads.html
https://www.oracle.com/java/technologies/javase-jdk14-downloads.html
https://www.npmjs.com/package/npx
https://www.microsoft.com/p/windows-terminal-preview/9n0dx20hk701?activetab=pivot:overviewtab

NOTE

C:\Users\[User Name]\AppData\Local\Android\Sdk\tools\bin\sdkmanager --licenses

<Text style={styles.sectionDescription}>
 Edit <Text style={styles.highlight}>App.js</Text> to change this
 screen and then come back to see your edits. HELLO WORLD!
</Text>

If you are using a new install of Android Studio and haven't yet done any other Android development, you may

get errors at the command line when you run the app about accepting licenses for the Android SDK. Such as

"Warning: License for package Android SDK Platform 29 not accepted." To resolve this, you can click the SDK

Manager button in Android Studio . Or, you can list and accept the licenses with the following command,

making sure to use the path to the SDK location on your machine.

6. To modify the app, open the MyReactNativeApp project directory in the IDE of your choice. We

recommend VS Code or Android Studio.

7. The project template created by react-native init uses a main page named App.js . This page is pre-

populated with a lot of useful links to information about React Native development. Add some text to the

first Text element, like the "HELLO WORLD!" string shown below.

8. Reload the app to show the changes you made. There are several ways to do this.

In the Metro Bundler console window, type "r".

In the Android device emulator, double tap "r" on your keyboard.

On a hardware android device, shake the device to bring up the React Native debug menu and select

`Reload'.

 Additional resources
Develop Dual-screen apps for Android and get the Surface Duo device SDK

Add Windows Defender exclusions to improve performance

Enable Virtualization support to improve Emulator performance

https://docs.microsoft.com/en-us/dual-screen/android/

Get started developing a PWA or Hybrid web app
for Android

 7/14/2021 • 5 minutes to read • Edit Online

 Features of a PWA or Hybrid web app

 Apache Cordova

This guide will help you to get started creating a hybrid web app or Progressive Web App (PWA) on Windows

using a single HTML/CSS/JavaScript codebase that can be used on the web and across device platforms

(Android, iOS, Windows).

By using the right frameworks and components, web-based applications can work on an Android device in a

way that looks to users very similar to a native app.

There are two main types of web apps that can be installed on Android devices. The main difference being

whether your application code is embedded in an app package (hybrid) or hosted on a web server (pwa).

Hybrid web apps : Code (HTML, JS, CSS) is packaged in an APK and can be distributed via the Google

Play Store. The viewing engine is isolated from the users' internet browser, no session or cache sharing.

Progressive Web Apps (PWAs) : Code (HTML, JS, CSS) lives on the web and doesn't need to be

packaged as an APK. Resources are downloaded and updated as needed using a Service Worker. The

Chrome browser will render and display your app, but will look native and not include the normal

browser address bar, etc. You can share storage, cache, and sessions with the browser. This is basically like

installing a shortcut to the Chrome browser in a special mode. PWAs can also be listed in the Google Play

Store using Trusted Web Activity.

PWAs and hybrid web apps are very similar to a native Android app in that they:

Can be installed via the App Store (Google Play Store and/or Microsoft Store)

Have access to native device features like camera, GPS, Bluetooth, notifications, and list of contacts

Work Offline (no internet connection)

PWAs also have a few unique features:

Can be installed on the Android home screen directly from the web (without an App Store)

Can additionally be installed via the Google Play Store using a Trusted Web Activity

Can be discovered via web search or shared via a URL link

Rely on a Service Worker to avoid the need to package native code

You don't need a framework to create a Hybrid app or PWA, but there are a few popular frameworks that will be

covered in this guide, including PhoneGap (with Cordova) and Ionic (with Cordova or Capacitor using Angular

or React).

Apache Cordova is an open-source framework that can simplify the communication between your JavaScript

code living in a native WebView and the native Android platform by using plugins. These plugins expose

JavaScript endpoints that can be called from your code and used to call native Android device APIs. Some

example Cordova plugins include access to device services like battery status, file access, vibration / ring tones,

etc. These features are not typically available to web apps or browsers.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/android/pwa.md
https://css-tricks.com/how-to-get-a-progressive-web-app-into-the-google-play-store/
https://developers.google.com/web/fundamentals/primers/service-workers
https://cordova.apache.org/
https://developer.android.com/reference/android/webkit/WebView
https://cordova.apache.org/plugins/?platforms=cordova-android

 Ionic

NOTE

 Get started with Ionic by installing required tools

 Create a new project with Ionic Cordova and Angular

npm install -g @ionic/cli cordova

ionic start photo-gallery tabs

cd photo-gallery

ionic serve

 Create a new project with Ionic Capacitor and Angular

There are two popular distributions of Cordova:

PhoneGap: Support has been discontinued by Adobe.

Ionic

Ionic is a framework that adjusts the user interface (UI) of your app to match the design language of each

platform (Android, iOS, Windows). Ionic enables you to use either Angular or React.

There is a new version of Ionic that uses an alternative to Cordova, called Capacitor. This alternative uses containers to

make your app more web-friendly.

To get started building a PWA or hybrid web app with Ionic, you should first install the following tools:

Node.js for interacting with the Ionic ecosystem. Download NodeJS for Windows or follow the NodeJS

installation guide using Windows Subsystem for Linux (WSL). You may want to consider using Node

Version Manager (nvm) if you will be working with multiple projects and version of NodeJS.

VS Code for writing your code. Download VS Code for Windows. You may also want to install the WSL

Remote Extension if you prefer to build your app with a Linux command line.

Windows Terminal for working with your preferred command-line interface (CLI). Install Windows

Terminal from Microsoft Store.

Git for version control. Download Git.

Install Ionic and Cordova by entering the following in your command line:

Create an Ionic Angular app using the "Tabs" app template by entering the command:

Change into the app folder :

Run the app in your web browser :

For more information, see the Ionic Cordova Angular docs. Visit the Making your Angular app a PWA section of

the Ionic docs to learn how to move your app from being a hybrid to a PWA.

https://blog.phonegap.com/update-for-customers-using-phonegap-and-phonegap-build-cc701c77502c
https://ionicframework.com/
https://ionicframework.com/
https://ionicframework.com/docs/developer-resources/guides/first-app-v4/intro
https://ionicframework.com/react
https://capacitor.ionicframework.com/
https://ionicframework.com/blog/announcing-capacitor-1-0/
https://nodejs.org/en/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-wsl
https://www.microsoft.com/en-us/p/windows-terminal-preview/9n0dx20hk701?activetab=pivot:overviewtab
https://git-scm.com/downloads
https://ionicframework.com/docs/developer-resources/guides/first-app-v4/intro
https://ionicframework.com/docs/angular/pwa

npm install -g @ionic/cli native-run cordova-res

ionic start photo-gallery tabs --type=angular --capacitor

cd photo-gallery

npm install @ionic/pwa-elements

import { defineCustomElements } from '@ionic/pwa-elements/loader';

// Call the element loader after the platform has been bootstrapped
defineCustomElements(window);

ionic serve

 Create a new project with Ionic and React

npm install -g @ionic/cli

ionic start myApp blank --type=react

cd myApp

ionic serve

Install Ionic and Cordova-Res by entering the following in your command line:

Create an Ionic Angular app using the "Tabs" app template and adding Capacitor by entering the command:

Change into the app folder :

Add components to make the app a PWA:

Import @ionic/pwa-elements by add the following to your src/main.ts file:

Run the app in your web browser :

For more information, see the Ionic Capacitor Angular docs. Visit the Making your Angular app a PWA section of

the Ionic docs to learn how to move your app from being a hybrid to a PWA.

Install the Ionic CLI by entering the following in your command line:

Create a new project with React by entering the command:

Change into the app folder :

Run the app in your web browser :

For more information, see the Ionic React docs. Visit the Making your React app a PWA section of the Ionic docs

https://ionicframework.com/docs/angular/your-first-app
https://ionicframework.com/docs/angular/pwa
https://ionicframework.com/docs/react/quickstart
https://ionicframework.com/docs/react/pwa

 Test your Ionic app on a device or emulator

ionic cordova run android

ionic cordova emulate android --list

 Additional resources

to learn how to move your app from being a hybrid to a PWA.

To test your Ionic app on an Android device, plug-in your device (make sure it is first enabled for development),

then in your command line enter :

To test your Ionic app on an Android device emulator, you must:

1. Install the required components -- Java Development Kit (JDK), Gradle, and the Android SDK.

2. Create an Android Virtual Device (AVD): See the [Android developer guide]]

(https://developer.android.com/studio/run/managing-avds.html).

3. Enter the command for Ionic to build and deploy your app to the emulator :

ionic cordova emulate [<platform>] [options] . In this case, the command should be:

See the Cordova Emulator in the Ionic docs for more info.

Develop Dual-screen apps for Android and get the Surface Duo device SDK

Add Windows Defender exclusions to improve performance

Enable Virtualization support to improve emulator performance

https://cordova.apache.org/docs/en/latest/guide/platforms/android/#installing-the-requirements
https://developer.android.com/studio/run/managing-avds.html
https://ionicframework.com/docs/cli/commands/cordova-emulate
https://docs.microsoft.com/en-us/dual-screen/android/

Update Windows Defender settings to improve
performance

 7/14/2021 • 2 minutes to read • Edit Online

 Windows Defender Overview

WARNING

 Add exclusions to Windows Defender

This guide covers how to set up exclusions in your Windows Defender security settings in order to improve your

build times and the overall performance speed of your Windows machine.

In Windows 10, version 1703 and later, the Windows Defender Antivirus app is part of Windows Security.

Windows Defender aims to keep your PC safe with built-in, real-time protection against viruses, ransomware,

spyware, and other security threats.

However , Windows Defender's real-time protection will also dramatically slow file system access and build

speed when developing Android apps.

During the Android build process, many files are created on your computer. With antivirus real-time scanning

enabled, the build process will halt each time a new file is created while the antivirus scans that file.

Fortunately, Windows Defender has the capability to exclude files, project directories, or file types that you know

to be secure from it's antivirus scanning process.

To ensure that your computer is safe from malicious software, you should not completely disable real-time scanning or

your Windows Defender antivirus software.

To improve your Android build speed, add exclusions in the Windows Defender Security Center by:

1. Select the Windows menu Star t button

2. Enter Windows Security

3. Select Virus and threat protection

4. Select Manage settings under Virus & threat protection settings

5. Scroll to the Exclusions heading and select Add or remove exclusions

6. Select + Add an exclusion. You will then need to choose whether the exclusion you wish to add is a File,

Folder , File type, or Process .

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/android/defender-settings.md
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-antivirus/windows-defender-security-center-antivirus
windowsdefender://

 Recommended exclusions

NOTE

 Additional resources

The following list shows the default location of each Android Studio directory recommended to add as an

exclusion from Windows Defender real-time scanning:

Gradle cache: %USERPROFILE%\.gradle

Android Studio projects: %USERPROFILE%\AndroidStudioProjects

Android SDK: %USERPROFILE%\AppData\Local\Android\SDK

Android Studio system files: %USERPROFILE%\.AndroidStudio<version>\system

These directory locations may not apply to your project if you have not used the default locations set by Android

Studio or if you have downloaded a project from GitHub (for example). Consider adding an exclusion to the

directory of your current Android development project, wherever that may be located.

Additional exclusions you may want to consider include:

Visual Studio dev environment process: devenv.exe

Visual Studio build process: msbuild.exe

JetBrains directory: %LOCALAPPDATA%\JetBrains\<Transient directory (folder)>

For more information on adding antivirus scanning exclusions, including how to customize directory locations

for Group Policy controlled environments, see the Antivirus Impact section of the Android Studio

documentation.

Daniel Knoodle has set up a GitHub repo with recommended scripts to add Windows Defender exclusions for Visual

Studio 2017.

Develop Dual-screen apps for Android and get the Surface Duo device SDK

Add Windows Defender exclusions to improve performance

https://developer.android.com/studio/intro/studio-config#antivirus-impact
https://gist.github.com/dknoodle/5a66b8b8a3f2243f4ca5c855b323cb7b#file-windows-defender-exclusions-vs-2017-ps1-L10
https://docs.microsoft.com/en-us/dual-screen/android/

Enable Virtualization support to improve emulator performance

Test on an Android device or emulator
 7/14/2021 • 4 minutes to read • Edit Online

 Run on a real Android device

 Enable your device for development

 Run your app on the device

There are several ways to test and debug your Android application using a real device or emulator on your

Windows machine. We have outlined a few recommendations in this guide.

To run your app on a real Android device, you will first need to enable your Android device for development.

Developer options on Android have been hidden by default since version 4.2 and enabling them can vary based

on the Android version.

For a device running a recent version of Android 9.0+:

1. Connect your device to your Windows development machine with a USB cable. You may receive a

notification to install a USB driver.

2. Open the Settings screen on your Android device.

3. Select About phone.

4. Scroll to the bottom and tap Build number seven times, until You are now a developer! is visible.

5. Return to the previous screen, select System.

6. Select Advanced, scroll to the bottom, and tap Developer options .

7. In the Developer options window, scroll down to find and enable USB debugging.

For a device running an older version of Android, see Set Up Device for Development.

1. In the Android Studio toolbar, select your app from the run configurations drop-down menu.

2. From the target device drop-down menu, select the device that you want to run your app on.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/android/emulator.md
https://docs.microsoft.com/en-us/xamarin/android/get-started/installation/set-up-device-for-development

 Run your app on a virtual Android device using an emulator

 Enable virtualization support

 Emulator for native development with Android Studio

3. Select Run ▷. This will launch the app on your connected device.

The first thing to know about running an Android emulator on your Windows machine is that regardless of your

IDE (Android Studio, Visual Studio, etc), emulator performance is vastly improved by enabling virtualization

support.

Before creating a virtual device with the Android emulator, it is recommended that you enable virtualization by

turning on the Hyper-V and Windows Hypervisor Platform (WHPX) features. This will allow your computer's

processor to significantly improve the execution speed of the emulator.

To run Hyper-V and Windows Hypervisor Platform, your computer must:

Have 4GB of memory available

Have a 64-bit Intel processor or AMD Ryzen CPU with Second Level Address Translation (SLAT)

Be running Windows 10 build 1803+ (Check your build #)

Have updated graphics drivers (Device Manager > Display adapters > Update driver)

If your machine doesn't fit this criteria, you may be able to run Intel HAXM or AMD Hypervisor. For more

info, see the article: Hardware acceleration for emulator performance or the Android Studio Emulator

documentation.

1. Verify that your computer hardware and software is compatible with Hyper-V by opening a command

prompt and entering the command: systeminfo

2. In the Windows search box (lower left), enter "windows features". Select Turn Windows features on or

off from the search results.

3. Once the Windows Features list appears, scroll to find Hyper-V (includes both Management Tools and

Platform) and Windows Hyper visor Platform , ensure that the box is checked to enable both, then

select OK.

4. Restart your computer when prompted.

When building and testing a native Android app, we recommend using Android Studio. Once your app is ready

for testing, you can build and run your app by:

1. In the Android Studio toolbar, select your app from the run configurations drop-down menu.

2. From the target device drop-down menu, select the device that you want to run your app on.

ms-settings:about
https://github.com/intel/haxm/wiki/Installation-Instructions-on-Windows
https://github.com/google/android-emulator-hypervisor-driver-for-amd-processors
https://docs.microsoft.com/en-us/xamarin/android/get-started/installation/android-emulator/hardware-acceleration
https://developer.android.com/studio/run/emulator

TIP

 Emulator for cross-platform development with Visual Studio

 Install Android emulator with Visual Studio

3. Select Run ▷. This will launch the Android Emulator.

Once your app is installed on the emulator device, you can use Apply Changes to deploy certain code and resource

changes without building a new APK. See the Android developer guide for more information.

There are many Android emulator options available for Windows PCs. We recommend using the Google

Android emulator, as it offers access to the latest Android OS images and Google Play services.

1. If you don't already have it installed, download Visual Studio 2019. Use the Visual Studio Installer to

Modify your workloads and ensure that you have the Mobile development with .NET workload.

2. Create a new project. Once you've set up the Android Emulator, you can use the Android Device Manager

to create, duplicate, customize, and launch a variety of Android virtual devices. Launch the Android Device

Manager from the Tools menu with: Tools > Android > Android Device Manager .

3. Once the Android Device Manager opens, select + New to create a new device.

4. You will need to give the device a name, choose the base device type from a drop-down menu, choose a

processor, and OS version, along with several other variables for the virtual device. For more information,

Android Device Manager Main Screen.

5. In the Visual Studio toolbar, choose between Debug (attaches to the application process running inside

the emulator after your app starts) or Release mode (disables the debugger). Then choose a virtual

device from the device drop-down menu and select the Play button ▷ to run your application in the

emulator.

https://developer.android.com/studio/run/emulator
https://developer.android.com/studio/run#apply-changes
https://www.androidauthority.com/best-android-emulators-for-pc-655308/
https://developer.android.com/studio/run/emulator
https://visualstudio.microsoft.com/downloads/
https://docs.microsoft.com/en-us/visualstudio/install/modify-visual-studio#modify-workloads
https://docs.microsoft.com/en-us/xamarin/android/get-started/installation/android-emulator/
https://docs.microsoft.com/en-us/xamarin/android/get-started/installation/android-emulator/device-manager?pivots=windows&tabs=windows#requirements
https://docs.microsoft.com/en-us/xamarin/android/get-started/installation/android-emulator/device-manager?pivots=windows&tabs=windows#main-screen

 Additional resources
Develop Dual-screen apps for Android and get the Surface Duo device SDK

Add Windows Defender exclusions to improve performance

https://docs.microsoft.com/en-us/dual-screen/android/

Overview of Docker remote development on
Windows

 3/5/2021 • 4 minutes to read • Edit Online

 Docker on Windows 10

Using containers for remote development and deploying applications with the Docker platform is a very

popular solution with many benefits. Learn more about the variety of support offered by Microsoft tools and

services, including Windows Subsystem for Linux (WSL), Visual Studio, Visual Studio Code, .NET, and a broad

variety of Azure services.

Install Docker Desktop for Windows

Find installation steps, system requirements, what's included in the installer, how to uninstall, differences

between stable and edge versions, and how to switch between Windows and Linux containers.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/docker/overview.md
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/

Get star ted with Docker

Docker orientation and setup docs with step-by-step instructions on how to get started, including a video walk-

through.

MS Learn course: Introduction to Docker containers

Microsoft Learn offers a free intro course on Docker containers, in addition to a variety of courses on get started

with Docker and connecting with Azure services.

https://docs.docker.com/get-started/
https://docs.docker.com/get-started/
https://docs.microsoft.com/en-us/learn/modules/intro-to-docker-containers/
https://docs.microsoft.com/en-us/learn/modules/intro-to-docker-containers/
https://docs.microsoft.com/en-us/learn/browse/?terms=docker

 VS Code and Docker

Get star ted with Docker remote containers on WSL 2

Learn how to set up Docker Desktop for Windows to use with a Linux command line (Ubuntu, Debian, SUSE, etc)

using WSL 2 (Windows Subsystem for Linux, version 2).

Create a Docker container with VS Code

Set up a full-featured dev environment inside of a container with the Remote - Containers extension and find

tutorials to set up a NodeJS container, a Python container, or a ASP.NET Core container.

https://docs.microsoft.com/en-us/windows/wsl/tutorials/wsl-containers
https://docs.microsoft.com/en-us/windows/wsl/tutorials/wsl-containers
https://code.visualstudio.com/docs/remote/create-dev-container
https://code.visualstudio.com/docs/remote/containers-tutorial
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers
https://code.visualstudio.com/docs/containers/quickstart-node
https://code.visualstudio.com/docs/containers/quickstart-python
https://code.visualstudio.com/docs/containers/quickstart-aspnet-core

Attach VS Code to a Docker container

Learn how to attach Visual Studio Code to a Docker container that is already running or to a container in a

Kubernetes cluster.

Advanced Container Configuration

Learn about advanced setup scenarios for using Docker containers with Visual Studio Code or read this article

on how to Inspect Containers for debugging with VS Code.

https://code.visualstudio.com/docs/remote/attach-container
https://code.visualstudio.com/docs/remote/attach-container
https://code.visualstudio.com/docs/remote/attach-container#_attach-to-a-container-in-a-kubernetes-cluster
https://code.visualstudio.com/docs/remote/containers-advanced
https://code.visualstudio.com/docs/remote/containers-advanced
https://code.visualstudio.com/blogs/2019/10/31/inspecting-containers

 Visual Studio and Docker

Using Remote Containers in WSL 2

Read about using Docker containers with WSL 2 (Windows Subsystem for Linux, version 2) and how to set

everything up with VS Code. You can also read about how it works.

Docker suppor t in Visual Studio

Learn about the Docker support available for ASP.NET projects, ASP.NET Core projects, and .NET Core and .NET

Framework console projects in Visual Studio, in addition to support for container orchestration.

https://code.visualstudio.com/blogs/2020/07/01/containers-wsl
https://code.visualstudio.com/blogs/2020/07/01/containers-wsl
https://code.visualstudio.com/blogs/2020/03/02/docker-in-wsl2#_how-it-works
https://docs.microsoft.com/en-us/visualstudio/containers/overview#docker-support-in-visual-studio-1
https://docs.microsoft.com/en-us/visualstudio/containers/overview#docker-support-in-visual-studio-1

Quickstar t: Docker in Visual Studio

Learn how to build, debug, and run containerized .NET, ASP.NET, and ASP.NET Core apps and publish them to

Azure Container Registry (ACR), Docker Hub, Azure App Service, or your own container registry with Visual

Studio.

Tutorial: Create a multi-container app with Docker Compose

Learn how to manage more than one container and communicate between them when using Container Tools in

Visual Studio. You can also find links to tutorials like how to Use Docker with a React Single-page App.

https://docs.microsoft.com/en-us/visualstudio/containers/container-tools
https://docs.microsoft.com/en-us/visualstudio/containers/container-tools
https://docs.microsoft.com/en-us/visualstudio/containers/tutorial-multicontainer
https://docs.microsoft.com/en-us/visualstudio/containers/tutorial-multicontainer
https://docs.microsoft.com/en-us/visualstudio/containers/container-tools-react

 .NET Core and Docker

Container Tools in Visual Studio

Find topics covering how to run build tools in a container, debugging Docker apps, troubleshoot development

tools, deploy Docker containers, and bridge Kubernetes with Visual Studio.

https://docs.microsoft.com/en-us/visualstudio/containers
https://docs.microsoft.com/en-us/visualstudio/containers
https://docs.microsoft.com/en-us/visualstudio/containers/edit-and-refresh

.NET Guide: Microser vice apps and containers

Intro guide to microservices-based apps managed with containers.

What is Docker?

Basic explanation of Docker containers, including Comparing Docker containers with Virtual machines and a

basic taxonomy of Docker terms and concepts explaining the difference between containers, images, and

registries.

https://docs.microsoft.com/en-us/dotnet/architecture/microservices/
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/container-docker-introduction/docker-defined
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/container-docker-introduction/docker-defined
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/container-docker-introduction/docker-defined#comparing-docker-containers-with-virtual-machines
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/container-docker-introduction/docker-containers-images-registries

 Azure Container Services

Tutorial: Container ize a .NET Core app

Learn how to containerize a .NET Core application with Docker, including creation of a Dockerfile, essential

commands, and cleaning up resources.

Development workflow for Docker apps

Describes the inner-loop development workflow for Docker container-based applications.

https://docs.microsoft.com/en-us/dotnet/core/docker/build-container?tabs=windows
https://docs.microsoft.com/en-us/dotnet/core/docker/build-container?tabs=windows
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/docker-application-development-process/docker-app-development-workflow
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/docker-application-development-process/docker-app-development-workflow

Azure Container Instances

Learn how to run Docker containers on-demand in a managed, serverless Azure environment, includes ways to

deploy with Docker CLI, ARM, Azure Portal, create multi-container groups, share data between containers,

connect to a virtual network, and more.

Azure Container Registr y

Learn how to build, store, and manage container images and artifacts in a private registry for all types of

container deployments. Create Azure container registries for your existing container development and

deployment pipelines, set up automation tasks, and learn how to manage your registries, including geo-

replication and best practices.

https://docs.microsoft.com/en-us/azure/container-instances/
https://docs.microsoft.com/en-us/azure/container-instances/
https://docs.microsoft.com/en-us/azure/container-registry
https://docs.microsoft.com/en-us/azure/container-registry

 Docker Containers Explainer Video

Azure Ser vice Fabric

Learn about Azure Service Fabric, a distributed systems platform for packaging, deploying, and managing

scalable and reliable microservices and containers.

Azure App Ser vice

Learn how to build and host web apps, mobile back ends, and RESTful APIs in the programming language of

your choice without managing infrastructure. Try the Azure App Service course on MS Learn to deploy a web

app based on a Docker image and configure continuous deployment.

Learn about more Azure services that support containers.

https://docs.microsoft.com/en-us/azure/service-fabric
https://docs.microsoft.com/en-us/azure/service-fabric
https://docs.microsoft.com/en-us/azure/app-service
https://docs.microsoft.com/en-us/azure/app-service
https://docs.microsoft.com/en-us/learn/modules/deploy-run-container-app-service
https://azure.microsoft.com/overview/containers/

 Kubernetes and Container Orchestration Explainer Video

 Containers on Windows

Containers on Windows docs

Package apps with their dependencies and leverage operating system-level virtualization for fast, fully isolated

environments on a single system. Learn about Windows containers, including quick starts, deployment guides,

and samples.

https://www.youtube-nocookie.com/embed/0oEsMwSxBsk
https://www.youtube-nocookie.com/embed/3RTvoI-A7UQ
https://docs.microsoft.com/en-us/virtualization/windowscontainers
https://docs.microsoft.com/en-us/virtualization/windowscontainers
https://docs.microsoft.com/en-us/virtualization/windowscontainers/about
https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/faq

FAQs about Windows containers

Find frequently asked questions about containers. Also see this explanation in StackOverflow on "What's the

difference between Docker for Windows and Docker on Windows?"

Set up your environment

Learn how to set up Windows 10 or Windows Server to create, run, and deploy containers, including

prerequisites, installing Docker, and working with Windows Container Base Images.

Create a Windows Ser ver container on an Azure Kubernetes Ser vice (AKS)

Learn how to deploy an ASP.NET sample app in a Windows Server container to an AKS cluster using the Azure

CLI.

https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/faq
https://stackoverflow.com/questions/38464724/whats-the-difference-between-docker-for-windows-and-docker-on-windows/40320748
https://docs.microsoft.com/en-us/virtualization/windowscontainers/quick-start/set-up-environment?tabs=windows-10-client
https://docs.microsoft.com/en-us/virtualization/windowscontainers/quick-start/set-up-environment?tabs=windows-10-client
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/container-base-images
https://docs.microsoft.com/en-us/azure/aks/windows-container-cli
https://docs.microsoft.com/en-us/azure/aks/windows-container-cli

Overview of developing on Windows with Rust
 6/2/2021 • 2 minutes to read • Edit Online

TIP

 What is Rust?

 The pieces of the Rust development toolset/ecosystem

 Setting up your development environment

It's not hard to get started with Rust. If you're a beginner who's interested in learning Rust using Windows 10,

then we recommend that you follow each detail of this step-by-step guide. It shows you what to install, and how

to set up your development evironment.

If you're already sold on Rust and you have your Rust environment already set up, and you just want to start calling

Windows APIs, then feel free to jump forward to the Rust for Windows, and the windows crate topic.

Rust is a systems programming language, so it's used for writing systems (such as operating systems). But it can

also be used for applications where performance and trustworthiness are important. The Rust language syntax

is comparable to that of C++, provides performance on par with modern C++, and for many experienced

developers Rust hits all the right notes when it comes to compilation and runtime model, type system, and

deterministic finalization.

In addition, Rust is designed around the promise of guaranteed memory safety, without the need for garbage

collection.

So why did we choose Rust for the latest language projection for Windows? One factor is that Stack Overflow's

annual developer survey shows Rust to be the best-loved programming language by far, year after year. While

you might find that the language has a steep learning curve, once you're over the hump it's hard not to fall in

love.

Furthermore, Microsoft is a founding member of the Rust Foundation. The Foundation is an independent non-

profit organization, with a new approach to sustaining and growing a large, participatory, open source

ecosystem.

We'll introduce some Rust tools and terms in this section. You can refer back here to refresh yourself on any of

the descriptions.

A crate is a Rust unit of compilation and linking. A crate can exist in source code form, and from there it can

be processed into a crate in the form of either a binary executable (binary for short), or a binary library

(library for short).

A Rust project is known as a package. A package contains one or more crates, together with a Cargo.toml file

that describes how to build those crates.

rustup is the installer and updater for the Rust toolchain.

Cargo is the name of Rust's package management tool.

rustc is the compiler for Rust. Most of the time, you won't invoke rustc directly; you'll invoke it indirectly

via Cargo.

crates.io (https://crates.io/) is the Rust community's crate registry.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/rust/overview.md
https://www.rust-lang.org/
https://insights.stackoverflow.com/survey
https://foundation.rust-lang.org/

 Related

In the next topic, we'll see how to set up your dev environment on Windows for Rust.

The Rust website

Rust for Windows, and the windows crate

Stack Overflow annual developer survey

Rust Foundation

crates.io

Set up your dev environment on Windows for Rust

https://www.rust-lang.org/
https://insights.stackoverflow.com/survey
https://foundation.rust-lang.org/
https://crates.io/

Set up your dev environment on Windows for Rust
 5/4/2021 • 6 minutes to read • Edit Online

 Install Visual Studio (recommended) or the Microsoft C++ Build Tools

IMPORTANT

NOTE

 Install Rust

In the Overview of developing on Windows with Rust topic, we introduced Rust and talked about what it is and

what some of its main moving parts are. In this topic, we'll set up our development environment.

We recommend that you do your Rust development on Windows. However, if you plan to locally compile and

test on Linux, then developing with Rust on the Windows Subsystem for Linux (WSL) is also an option.

On Windows, Rust requires certain C++ build tools.

You can either download the Microsoft C++ Build Tools, or (recommended) you might prefer just to install

Microsoft Visual Studio.

Use of the Microsoft C++ Build Tools, or Visual Studio Build Tools, requires a valid Visual Studio license (either Community,

Pro, or Enterprise).

We'll be using Visual Studio Code as our integrated development environment (IDE) for Rust, and not Visual Studio. But

you can still install Visual Studio without expense. A Community edition is available—it's free for students, open-source

contributors, and individuals.

While installing Visual Studio, there are several Windows workloads that we recommend you select—.NET

desktop development, Desktop development with C++, and Universal Windows Platform

development. You might not think that you'll need all three, but it's likely enough that some dependency will

arise where they're required that we feel it's just simpler to select all three.

New Rust projects default to using Git. So also add the individual component Git for Windows to the mix (use

the search box to search for it by name).

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/rust/setup.md
https://docs.microsoft.com/en-us/windows/wsl/about
https://visualstudio.microsoft.com/visual-cpp-build-tools/
https://visualstudio.microsoft.com/downloads/

TIP

 Install Visual Studio Code

 Hello, world! tutorial (Rust with VS Code)

Next, install Rust from the Rust website. The website detects that you're running Windows, and it offers you 64-

and 32-bit installers of the rustup tool for Windows, as well as instructions on installing Rust to the Windows

Subsystem for Linux (WSL).

Rust works very well on Windows; so there's no need for you to go the WSL route (unless you plan to locally compile and

test on Linux). Since you have Windows, we recommend that you just run the rustup installer for 64-bit Windows. You'll

then be all set to write apps for Windows using Rust.

When the Rust installer is finished, you'll be ready to program with Rust. You won't have a convenient IDE yet

(we'll cover that in the next section—Install Visual Studio Code). And you're not yet set up to call Windows APIs.

But you could launch a command prompt (cmd.exe), and perhaps issue the command cargo --version . If you

see a version number printed, then that confirms that Rust installed correctly.

If you're curious about the use of the cargo keyword above, Cargo is the name of the tool in the Rust

development environment that manages and builds your projects (more properly, packages) and their

dependencies.

And if you really do want to dive in to some programming at this point (even without the convenience of an

IDE), then you could read the Hello, World! chapter of the The Rust Programming Language book on the Rust

website.

By using Visual Studio Code (VS Code) as your text editor/integrated development environment (IDE), you can

take advantage of language services such as code completion, syntax highlighting, formatting, and debugging.

VS Code also contains a built-in terminal that enables you to issue command-line arguments (to issue

commands to Cargo, for example).

NOTE

1. First, download and install Visual Studio Code for Windows.

2. After you've installed VS Code, install the rust-analyzer extension. You can either install the rust-analyzer

extension from the Visual Studio Marketplace, or you can open VS Code, and search for rust-analyzer in

the extensions menu (Ctrl+Shift+X).

3. For debugging support, install the CodeLLDB extension. You can either install the CodeLLDB extension

from the Visual Studio Marketplace, or you can open VS Code, and search for CodeLLDB in the

extensions menu (Ctrl+Shift+X).

An alternative to the CodeLLDB extension for debugging support is the Microsoft C/C++ extenson. The

C/C++ extension doesn't integrate as well with the IDE as CodeLLDB does. But the C/C++ extension provides

superior debugging information. So you might want to have that standing by in case you need it.

You can either install the C/C++ extension from the Visual Studio Marketplace, or you can open VS Code, and

search for C/C++ in the extensions menu (Ctrl+Shift+X).

4. If you want to open the terminal in VS Code, select View > Terminal , or alternatively use the shortcut

Ctr l+` (using the backtick character). The default terminal is PowerShell.

https://www.rust-lang.org/tools/install
https://docs.microsoft.com/en-us/windows/wsl/about
https://doc.rust-lang.org/book/ch01-02-hello-world.html
https://code.visualstudio.com/docs/editor/integrated-terminal
https://code.visualstudio.com
https://marketplace.visualstudio.com/items?itemName=matklad.rust-analyzer
https://marketplace.visualstudio.com/items?itemName=vadimcn.vscode-lldb
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools

Let's take Rust for a spin with a simple "Hello, world!" app.

cargo new first_rust_project

cd first_rust_project
code .

// main.rs
fn main() {
 println!("Hello, world!");
}

NOTE

NOTE

1. First, launch a command prompt (cmd.exe), and cd to a folder where you want to keep your Rust

projects.

2. Then ask Cargo to create a new Rust project for you with the following command.

The argument you pass to the cargo new command is the name of the project that you want Cargo to

create. Here, the project name is first_rust_project. The recommendation is that you name your Rust

projects using snake case (where words are lower-case, with each space replaced by an underscore).

Cargo creates a project for you with the name that you supply. And in fact Cargo's new projects contain

the source code for a very simple app that outputs a Hello, world! message, as we'll see. In addition to

creating the first_rust_project project, Cargo has created a folder named first_rust_project, and has put

the project's source code files in there.

3. So now cd into that folder, and then launch VS Code from within the context of that folder.

4. In VS Code's Explorer, open the src > main.rs file, which is the Rust source code file that contains your

app's entry point (a function named main). Here's what it looks like.

When you open the first .rs file in VS Code, you'll get a notification saying that some Rust components aren't

installed, and asking whether you want to install them. Click Yes , and VS Code will install the Rust language server.

You can tell from glancing at the code in main.rs that main is a function definition, and that it prints the

string "Hello, world!". For more details about the syntax, see Anatomy of a Rust Program on the Rust

website.

5. Now let's try running the app under the debugger. Put a breakpoint on line 2, and click Run > Star t

Debugging (or press F5). There are also Debug and Run commands embedded inside the text editor.

When you run an app under the debugger for the first time, you'll see a dialog box saying "Cannot start

debugging because no launch configuration has been provided". Click OK to see a second dialog box saying

"Cargo.toml has been detected in this workspace. Would you like to generate launch configurations for its

targets?". Click Yes . Then close the launch.json file and begin debugging again.

6. As you can see, the debugger breaks at line 2. Press F5 to continue, and the app runs to completion. In

the Terminal pane, you'll see the expected output "Hello, world!".

https://doc.rust-lang.org/book/ch01-02-hello-world.html#anatomy-of-a-rust-program

Rust for Windows

 Related

Not only can you use Rust on Windows, you can also write apps for Windows using Rust. Via the windows crate,

you can call any Windows API past, present, and future. There are more details about that, and code examples, in

the Rust for Windows, and the windows crate topic.

Rust for Windows, and the windows crate

Windows Subsystem for Linux (WSL)

Microsoft C++ Build Tools

Microsoft Visual Studio

Visual Studio Code for Windows

rust-analyzer extension

CodeLLDB extension

C/C++ extension

https://docs.microsoft.com/en-us/windows/wsl/about
https://visualstudio.microsoft.com/visual-cpp-build-tools/
https://visualstudio.microsoft.com/downloads/
https://code.visualstudio.com
https://marketplace.visualstudio.com/items?itemName=matklad.rust-analyzer
https://marketplace.visualstudio.com/items?itemName=vadimcn.vscode-lldb
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools

Rust for Windows, and the windows crate
 7/12/2021 • 2 minutes to read • Edit Online

 Introducing Rust for Windows

 Contribute to Rust for Windows

 Rust documentation for the Windows API

 Writing an app with Rust for Windows

In the Overview of developing on Windows with Rust topic, we demonstrated a simple app that outputs a Hello,

world! message. But not only can you use Rust on Windows, you can also write apps for Windows using Rust.

Rust for Windows is the latest language projection for Windows. It's currently in preview form, and you can see

it develop from version to version in its change log.

Rust for Windows lets you use any Windows API (past, present, and future) directly and seamlessly via the

windows crate (crate is Rust's term for a binary or a library, and/or the source code that builds into one).

Whether it's timeless functions such as CreateEventW and WaitForSingleObject, powerful graphics engines such

as Direct3D, traditional windowing functions such as CreateWindowExW and DispatchMessageW, or more

recent user interface (UI) frameworks such as Composition and Xaml, the windows crate has you covered.

The win32metadata project aims to provide metadata for Win32 APIs. This metadata describes the API surface—

strongly-typed API signatures, parameters, and types. This enables the entire Windows API to be projected in an

automated and complete way for consumption by Rust (as well as languages such as C# and C++). Also see

Making Win32 APIs more accessible to more languages.

As a Rust developer, you'll use Cargo (Rust's package management tool)—along with https://crates.io (the

Rust community's crate registry)—to manage the dependencies in your projects. The good news is that you can

reference the windows crate from your Rust apps, and then immediately beginning calling Windows APIs. You

can also find Rust documentation for the windows crate over on https://docs.rs .

Similar to C++/WinRT, Rust for Windows is an open source language projection developed on GitHub. Use the

Rust for Windows repo if you have questions about Rust for Windows, or if you wish to report issues with it.

The Rust for Windows repo also has some simple examples that you can follow. And there's an excellent sample

app in the form of Robert Mikhayelyan's Minesweeper.

Rust for Windows welcomes your contributions!

Identify and fix bugs in the source code

Rust for Windows benefits from the polished toolchain that Rust developers enjoy. But if having the entire

Windows API at your fingertips seems a little daunting, there's also Rust documentation for the Windows API.

This resource essentially documents how the Windows APIs and types are projected into idiomatic Rust. Use it

to browse or search for the APIs you need to know about, and that you need to know how to call.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/rust/rust-for-windows.md
https://www.youtube-nocookie.com/embed/-oZrsCPKsn4
https://github.com/microsoft/windows-rs/blob/master/docs/changelog.md
https://crates.io/crates/windows
https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-createeventw
https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-waitforsingleobject
https://docs.microsoft.com/en-us/windows/win32/direct3d12/directx-12-programming-guide
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-createwindowexw
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-dispatchmessagew
https://docs.microsoft.com/en-us/uwp/api/windows.ui.composition
https://docs.microsoft.com/en-us/uwp/api/windows.ui.xaml
https://crates.io/crates/windows
https://github.com/microsoft/win32metadata
https://blogs.windows.com/windowsdeveloper/2021/01/21/making-win32-apis-more-accessible-to-more-languages/
https://crates.io/crates/windows
https://docs.rs/windows/0.3.1/windows/
https://docs.microsoft.com/en-us/windows/uwp/cpp-and-winrt-apis/
https://github.com/microsoft/windows-rs
https://github.com/microsoft/windows-rs
https://github.com/microsoft/windows-samples-rs
https://github.com/robmikh/minesweeper-rs
https://github.com/microsoft/windows-rs
https://github.com/microsoft/windows-rs/tree/master/src
https://microsoft.github.io/windows-docs-rs/doc/bindings/Windows/

 Related

The next topic is the RSS reader tutorial, where we'll walk through writing a simple app with Rust for Windows.

Overview of developing on Windows with Rust

RSS reader tutorial

The windows crate

Documentation for the windows crate

Win32 metadata

Making Win32 APIs more accessible to more languages

Rust documentation for the Windows API

Rust for Windows

Minesweeper sample app

https://crates.io/crates/windows
https://docs.rs/windows/0.3.1/windows/
https://github.com/microsoft/win32metadata
https://blogs.windows.com/windowsdeveloper/2021/01/21/making-win32-apis-more-accessible-to-more-languages/
https://microsoft.github.io/windows-docs-rs/doc/bindings/Windows/
https://github.com/microsoft/windows-rs
https://github.com/robmikh/minesweeper-rs

RSS reader tutorial (Rust for Windows with VS
Code)

 7/6/2021 • 6 minutes to read • Edit Online

The previous topic introduced Rust for Windows, and the windows crate.

Now let's try out Rust for Windows by writing a simple app that downloads the titles of blog posts from a Really

Simple Syndication (RSS) feed.

cargo new rss_reader
cd rss_reader

cargo new --lib bindings

code .

1. Launch a command prompt (cmd.exe), and cd to a folder where you want to keep your Rust projects.

2. Then, via Cargo, create a new Rust project named rss_reader, and cd into the project's newly-created

folder.

3. Now—again via Cargo—we're going to create a new sub-project named bindings. As you can see in the

command below, this new project is a library, and it's going to serve as the medium through which we

bind to the Windows APIs that we want to call. At build time, the bindings library sub-project will build

into a crate (which is Rust's term for a binary or a library). We'll be consuming that crate from within the

rss_reader project, as we'll see.

Making bindings a nested crate means that when we build rss_reader, bindings will be able to cache the

results of any bindings we import.

4. Then open the rss_reader project in VS Code.

5. Let's work on the bindings library first.

In VS Code's Explorer, open the bindings > Cargo.toml file.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/dev-environment/rust/rss-reader-rust-for-windows.md

bindings\Cargo.toml
...

[dependencies]
windows="0.9.1"

[build-dependencies]
windows="0.9.1"

// bindings\build.rs
fn main() {
 windows::build!(
 Windows::Foundation::Collections::IVector,
 Windows::Foundation::{IAsyncOperationWithProgress, Uri},

 Windows::Web::Syndication::{
 ISyndicationText, RetrievalProgress, SyndicationClient, SyndicationFeed, SyndicationItem,
 },
);
}

A Cargo.toml file is a text file that describes a Rust project, including any dependencies it has.

Right now, the dependencies section is empty. So now edit that section (and also add a

[build-dependencies] section) so that it looks like this.

We've just added a dependency on the windows crate, both for the bindings library and for its build

script. That allows Cargo to download, build, and cache Windows support as a package. Set the version

number to whatever the latest version is—you'll be able to see that on the web page for the windows

crate.

6. Now we can add the build script itself; this is where we'll generate the bindings that we'll ultimately rely

on. In VS Code, right-click the bindings folder, and click New File. Type in the name build.rs, and press

Enter . Edit build.rs to look like this.

The windows::build! macro takes care of resolving any dependencies in the form of .winmd files, and

generating bindings for selected types directly from metadata. We could have asked for an entire

namespace (with Windows::Web::Syndication::*). But here we're asking for bindings to be generated only

https://crates.io/crates/windows

// bindings\src\lib.rs
windows::include_bindings!();

Cargo.toml
...

[dependencies]
bindings = { path = "bindings" }
windows = "0.9.1"

// src\main.rs
use bindings::{
 Windows::Foundation::Uri,
 Windows::Web::Syndication::SyndicationClient,
};

fn main() {
 println!("Hello, world!");
}

for the particular types we specify (such as SyndicationClient). In this way, you can import as little or as

much as you need, and avoid waiting for code to be generated and compiled for things that you'll never

need.

As well as the types that we'll be using explicitly, we also specify all of their dependencies. For example,

we'll be using a method of SyndicationClient that expects a parameter of type Uri . So in the build

macro we also include the definition for Windows::Foundation::Ur i so that we can call that method.

Other types are part of the windows crate itself. For example, windows::Result (which we'll see in use

soon) is defined by the windows crate, so it's always available. Note the lower-case windows in

windows::Result, as compared to the Pascal-cased namespace and type names for Windows types.

7. Open the bindings > src > lib.rs source code file. To include the bindings generated in the previous

step, replace the default code that you'll find in lib.rs with the following.

The windows::include_bindings! macro includes the source code that was generated in the previous step

by the build script. Now, any time you need access to additional APIs, just list them in the build script (

build.rs).

8. Let's now implement the main rss_reader project. First, open the Cargo.toml file at the root of the project,

and add the following dependency on the inner bindings crate, along with a dependency on the windows

crate.

9. Finally, open the rss_reader project's src > main.rs source code file. In there is the simple code that

outputs a Hello, world! message. Add this code to the beginning of main.rs .

The use declaration shortens the path to the types that we'll be using. There's the Uri type that we

mentioned earlier.

10. To create a new Uri , add this code into the main function.

https://docs.microsoft.com/en-us/uwp/api/windows.web.syndication.syndicationclient
https://docs.microsoft.com/en-us/uwp/api/windows.foundation.uri
https://docs.microsoft.com/en-us/uwp/api/windows.foundation.uri

// src\main.rs
...

fn main() -> windows::Result<()> {
 let uri = Uri::CreateUri("https://blogs.windows.com/feed")?;

 Ok(())
}

// src\main.rs
...

fn main() -> windows::Result<()> {
 let uri = Uri::CreateUri("https://blogs.windows.com/feed")?;
 let client = SyndicationClient::new()?;

 Ok(())
}

// src\main.rs
...

fn main() -> windows::Result<()> {
 let uri = Uri::CreateUri("https://blogs.windows.com/feed")?;
 let client = SyndicationClient::new()?;
 let feed = client.RetrieveFeedAsync(uri)?.get()?;

 Ok(())
}

Notice that we're using windows::Result as the return type of the main function. This will make things

easier, as it's common to deal with errors from operating system (OS) APIs. windows::Result helps us

with error propagation, and concise error handling.

You can see the question-mark operator at the end of the line of code that creates a Uri . To save on

typing, we do that to make use of Rust's error-propagation and short-circuiting logic. That means we

don't have to do a bunch of manual error handling for this simple example. For more info about this

feature of Rust, see The ? operator for easier error handling.

11. To download this RSS feed, we'll create a new SyndicationClient object.

The new function is Rust's equivalent of the default constructor.

12. Now we can use the SyndicationClient object to retrieve the feed.

Because Retr ieveFeedAsync is an asynchronous API, we can use the blocking get function (as shown

above). Alternatively, we could use the await operator within an async function (to cooperatively wait

for the results), much as you would do in C# or C++.

13. Now we can simply iterate over the resulting items, and let's print out just the titles.

https://doc.rust-lang.org/edition-guide/rust-2018/error-handling-and-panics/the-question-mark-operator-for-easier-error-handling.html
https://docs.microsoft.com/en-us/uwp/api/windows.web.syndication.syndicationclient.retrievefeedasync

// src\main.rs
...

fn main() -> windows::Result<()> {
 let uri = Uri::CreateUri("https://blogs.windows.com/feed")?;
 let client = SyndicationClient::new()?;
 let feed = client.RetrieveFeedAsync(uri)?.get()?;

 for item in feed.Items()? {
 println!("{}", item.Title()?.Text()?);
 }

 Ok(())
}

14. Now let's confirm that we can build and run by clicking Run > Run Without Debugging (or pressing

Ctr l+F5). There are also Debug and Run commands embedded inside the text editor. Alternatively, you

can submit the command cargo run from the command prompt (cd into the rss_reader folder first),

which will build and then run.

Down in the Terminal pane, you can see that Cargo successfully downloads and compiles the windows

crate, caching the results, and using them to make subsequent builds complete in less time. It then builds

the sample, and runs it, displaying a list of blog post titles.

 Showing a message box

That's as simple as it is to program Rust for Windows. Under the hood, however, a lot of love goes into building

the tooling so that Rust can both parse .winmd files based on ECMA-335 (Common Language Infrastructure, or

CLI) at compile time, and also faithfully honor the COM-based application binary interface (ABI) at run-time with

both safety and efficiency in mind.

We did say that Rust for Windows lets you call any Windows API (past, present, and future). So in this section

we'll add code to show a Windows message box to the user.

// bindings\build.rs
fn main() {
 windows::build!(
 ...
 Windows::Win32::UI::WindowsAndMessaging::MessageBoxA,
);
}

1. Open the bindings > build.rs source code file, and add to the generated bindings the function shown

below.

2. Next, open the project's src > main.rs source code file, and update the use declaration with the new

namespace, or module. And finally add code to call the MessageBoxA function (also see MessageBoxA

in the Rust documentation for the Windows API, which includes a link to MESSAGEBOX_STYLE).

https://www.ecma-international.org/publications-and-standards/standards/ecma-335/
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-messageboxa
https://microsoft.github.io/windows-docs-rs/doc/bindings/Windows/Win32/UI/WindowsAndMessaging/fn.MessageBoxA.html
https://microsoft.github.io/windows-docs-rs/doc/bindings/Windows/
https://microsoft.github.io/windows-docs-rs/doc/bindings/Windows/Win32/UI/WindowsAndMessaging/struct.MESSAGEBOX_STYLE.html

 Related

// src\main.rs
use bindings::{
 Windows::Foundation::Uri,
 Windows::Web::Syndication::SyndicationClient,
 Windows::Win32::UI::WindowsAndMessaging::*,
};

fn main() {
 ...

 unsafe {
 MessageBoxA(None, "Text", "Caption", MB_OK);
 }

 Ok(())
}

As you can see, we mark these older Win32 APIs as unsafe (see Unsafe blocks).

This time when you build and run, Rust displays a Windows message box after listing the blog post titles.

Rust for Windows, and the windows crate

ECMA-335

The ? operator for easier error handling

Unsafe blocks

https://doc.rust-lang.org/reference/unsafe-blocks.html
https://www.ecma-international.org/publications-and-standards/standards/ecma-335/
https://doc.rust-lang.org/edition-guide/rust-2018/error-handling-and-panics/the-question-mark-operator-for-easier-error-handling.html
https://doc.rust-lang.org/reference/unsafe-blocks.html

Windows Package Manager
 5/26/2021 • 2 minutes to read • Edit Online

 Windows Package Manager for developers

 Windows Package Manager for ISVs

 Understanding package managers

 Related topics

Windows Package Manager is a comprehensive package manager solution that consists of a command line tool

and set of services for installing applications on Windows 10.

Developers use the winget command line tool to discover, install, upgrade, remove and configure a curated set

of applications. After it is installed, developers can access winget via the Windows Terminal, PowerShell, or the

Command Prompt.

For more information, see Use the winget tool to install and manage applications.

Independent Software Vendors (ISVs) can use Windows Package Manager as a distribution channel for software

packages containing their tools and applications. To submit software packages (containing .msix, .msi, or .exe

installers) to Windows Package Manager, we provide the open source Microsoft Community Package

Manifest Repositor y on GitHub where ISVs can upload package manifests to have their software packages

considered for inclusion with Windows Package Manager. Manifests are automatically validated and may also be

reviewed manually.

For more information, see Submit packages to Windows Package Manager.

A package manager is a system or set of tools used to automate installing, upgrading, configuring and using

software. Most package managers are designed for discovering and installing developer tools.

Ideally, developers use a package manager to specify the prerequisites for the tools they need to develop

solutions for a given project. The package manager then follows the declarative instructions to install and

configure the tools. The package manager reduces the time spent getting an environment ready, and it helps

ensure the same versions of packages are installed on their machine.

Third party package managers can leverage the Microsoft Community Package Manifest Repository to increase

the size of their software catalog.

Use the winget tool to install and manage software packages

Submit packages to Windows Package Manager

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/package-manager/index.md

Use the winget tool to install and manage
applications

 7/7/2021 • 3 minutes to read • Edit Online

 Install winget

NOTE

 Administrator considerations

 Use winget

The winget command line tool enables developers to discover, install, upgrade, remove and configure

applications on Windows 10 computers. This tool is the client interface to the Windows Package Manager

service.

The winget tool is currently a preview, so not all planned functionality is available at this time.

There are several ways to install the winget tool:

The winget tool is included in the flight or preview version of Windows App Installer. You must install the

preview version of App Installer to use winget. To gain early access, submit your request to the

Windows Package Manager Insiders Program. Participating in the flight ring will guarantee you see the

latest preview updates.

Participate in the Windows Insider flight ring.

Install the Windows Desktop App Installer package located on the Releases page for the winget

repository.

The winget tool requires Windows 10, version 1809 (10.0.17763), or a later version of Windows 10.

Installer behavior can be different depending on whether you are running winget with administrator privileges.

When running winget without administrator privileges, some applications may require elevation to

install. When the installer runs, Windows will prompt you to elevate. If you choose not to elevate, the

application will fail to install.

When running winget in an Administrator Command Prompt, you will not see elevation prompts if the

application requires it. Always use caution when running your command prompt as an administrator, and

only install applications you trust.

After App Installer is installed, you can run winget by typing 'winget' from a Command Prompt.

One of the most common usage scenarios is to search for and install a favorite tool.

1. To search for a tool, type winget search <appname> .

2. After you have confirmed that the tool you want is available, you can install the tool by typing

winget install <appname> . The winget tool will launch the installer and install the application on your PC.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/package-manager/winget/index.md
https://www.microsoft.com/p/app-installer/9nblggh4nns1?ocid=9nblggh4nns1_ORSEARCH_Bing&rtc=1&activetab=pivot:overviewtab
https://aka.ms/AppInstaller_InsiderProgram
https://insider.windows.com
https://github.com/microsoft/winget-cli/releases
https://docs.microsoft.com/en-us/windows/security/identity-protection/user-account-control/user-account-control-overview
https://docs.microsoft.com/en-us/windows/security/identity-protection/user-account-control/how-user-account-control-works
https://docs.microsoft.com/en-us/windows/security/identity-protection/user-account-control/how-user-account-control-works

 Commands

C O M M A N D DESC RIP T IO N

export Exports a list of the installed packages.

features Shows the status of experimental features.

hash Generates the SHA256 hash for the installer.

import Installs all the packages in a file.

3. In addition to install and search, winget provides a number of other commands that enable you to show

details on applications, change sources, and validate packages. To get a complete list of commands, type:

winget --help .

The current preview of the winget tool supports the following commands.

install Installs the specified application.

list Display installed packages.

search Searches for an application.

settings Open settings.

show Displays details for the specified application.

source Adds, removes, and updates the Windows Package Manager
repositories accessed by the winget tool.

validate Validates a manifest file for submission to the Windows
Package Manager repository.

uninstall Uninstalls the given package.

upgrade Upgrades the given package.

C O M M A N D DESC RIP T IO N

 Options

O P T IO N DESC RIP T IO N

-v, --version Returns the current version of winget.

-- info Provides you with all detailed information on winget,
including the links to the license, privacy statement, and
configured group policies.

-?, --help Shows additional help for winget.

 Supported installer formats

 Scripting winget

The current preview of the winget tool supports the following options.

The current preview of the winget tool supports the following types of installers:

EXE

MSIX

MSI

You can author batch scripts and PowerShell scripts to install multiple applications.

@echo off
Echo Install Powertoys and Terminal
REM Powertoys
winget install Microsoft.Powertoys
if %ERRORLEVEL% EQU 0 Echo Powertoys installed successfully.
REM Terminal
winget install Microsoft.WindowsTerminal
if %ERRORLEVEL% EQU 0 Echo Terminal installed successfully. %ERRORLEVEL%

NOTE

 Missing tools

 Customize winget settings

 Open source details

When scripted, winget will launch the applications in the specified order. When an installer returns success or failure,

winget will launch the next installer. If an installer launches another process, it is possible that it will return to winget

prematurely. This will cause winget to install the next installer before the previous installer has completed.

If the community repository does not include your tool or application, please submit a package to our

repository. By adding your favorite tool, it will be available to you and everyone else.

You can configure the winget command line experience by modifying the settings.json file. For more

information, see https://aka.ms/winget-settings. Note that the settings are still in an experimental state and not

yet finalized for the preview version of the tool.

The winget tool is open source software available on GitHub in the repo https://github.com/microsoft/winget-

cli/. The source for building the client is located in the src folder.

The source for winget is contained in a Visual Studio 2019 C++ solution. To build the solution correctly, install

the latest Visual Studio with the C++ workload.

We encourage you to contribute to the winget source on GitHub. You must first agree to and sign the Microsoft

CLA.

https://github.com/microsoft/winget-pkgs
https://aka.ms/winget-settings
https://github.com/microsoft/winget-cli/
https://github.com/microsoft/winget-cli/tree/master/src
https://visualstudio.microsoft.com/downloads/

export command (winget)
 5/26/2021 • 2 minutes to read • Edit Online

 Usage

 Arguments

A RGUM EN T DESC RIP T IO N

-o,--output Path to the JSON file to be created

 Options

O P T IO N DESC RIP T IO N

-s, --source [optional] Specifies a source to export files from. Use this
option when you only want files from a specific source.

--include-versions [optional] Includes the version of the app currently installed.
Use this option if you want a specific version. By default,
unless specified, impor t will use latest.

 JSON schema

The expor t command of the winget tool exports a JSON file of apps to a specified file. The expor t command

uses JSON as the format. The JSON schema used by winget can be found here.

The expor t combined with the impor t command allows you to batch install applications on your PC.

The expor t command is often used to create a file that you can share with other developers, or for use when

restoring your build environment.

winget export [-o] <output> [<options>]

The following arguments are available.

The options allow you to customize the export experience to meet your needs.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/package-manager/winget/export.md
https://aka.ms/winget-packages.schema.1.0.json

EN T RY DESC RIP T IO N

Sources The sources application manifests come from.

Packages The collection of packages to install.

Id The Windows Package Manager package identifier used to
specify the package.

Version [optional] The specific version of the package to install.

 Exporting files

NOTE

The driving force behind the expor t command is the JSON file. You can find the schema for the JSON file here.

The JSON file includes the following hierarchy.

When the Windows Package Manager exports the JSON file, it attempts to export all the applications installed

on the PC. If the winget expor t command is not able to match an application to an application from an

available source, the export command will show a warning.

Matching an application depends on metadata in the manifest from a configured source, and metadata in Add /

Remove Programs in Windows based on the package installer.

After the export is complete, you can edit the resulting JSON file in your favorite editor. You can remove apps

you do not wish to import in the future.

https://aka.ms/winget-packages.schema.1.0.json

features command (winget)
 5/26/2021 • 2 minutes to read • Edit Online

 Usage

NOTE

The features command of the winget tool displays a list of the experimental features available with your

version of the Windows Package Manager.

Each feature can be turned on individually by enabling the features through settings .

You can find the latest up to date information features on the experimental features web page.

winget features

Notice above that the status of each feature is listed. If the feature is disabled you will not be able to use it. If

the feature is enabled you will notice that the command will be available to you through winget.

To enabled any disabled features, go to settings and enable the feature.

Features may be managed by group policy. You can use the winget --info command to view any policies in effect on

your system.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/package-manager/winget/features.md
https://aka.ms/winget-experimentalfeatures

hash command (winget)
 5/26/2021 • 2 minutes to read • Edit Online

 Usage

 Arguments

A RGUM EN T DESC RIP T IO N

-f,--file The path to the file to be hashed.

-m,--msix Specifies that the hash command will also create the SHA
256 SignatureSha256 for use with MSIX installers.

-?, --help Gets additional help on this command.

 Related topics

The hash command of the winget tool generates the SHA256 hash for an installer. This command is used if you

need to create a manifest file for submitting software to the Microsoft Community Package Manifest

Repositor y on GitHub. In addition, the hash command also supports generating a SHA256 certificate hash for

MSIX files.

winget hash [-f] \<file> [\<options>]

The hash sub command can only run on a local file. To use the hash sub command, download your installer to a

known location. Then pass in the file path as an argument to the hash sub command.

The following arguments are available:

Use the winget tool to install and manage applications

Submit packages to Windows Package Manager

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/package-manager/winget/hash.md

help command (winget)
 5/26/2021 • 2 minutes to read • Edit Online

 Usage

 Related topics

The help command of the winget tool displays help for all the supported commands and sub commands. In

addition, you can pass the --help argument to any other command to get details about all additional command

options.

Display help for all commands: winget --help

View options for a command: winget <command> --help

Use the winget tool to install and manage applications

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/package-manager/winget/help.md

import command (winget)
 5/26/2021 • 2 minutes to read • Edit Online

 Usage

 Arguments

A RGUM EN T DESC RIP T IO N

-i,-- impor t-file JSON file describing the packages to install.

 Options

O P T IO N DESC RIP T IO N

--ignore-unavailable Suppresses errors if the app requested is unavailable.

-- ignore-versions Ignores versions specified in the JSON file and installs the
latest available version.

 JSON Schema

The impor t command of the winget tool imports a JSON file of apps to install. The impor t command

combined with the expor t command allows you to batch install applications on your PC.

The impor t command is often used to share your developer environment or build up your PC image with your

favorite apps.

winget import [-i] <import-file> [<options>]

The following arguments are available.

The options allow you to customize the import experience to meet your needs.

The driving force behind the impor t command is the JSON file. You can find the schema for the JSON file here.

The JSON file includes the following hierarchy.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/package-manager/winget/import.md
https://aka.ms/winget-packages.schema.1.0.json

EN T RY DESC RIP T IO N

Sources The sources application manifests come from.

Packages The collection of packages to install.

Id The Windows Package Manager package identifier used to
specify the package.

Version [optional] The specific version of the package to install.

 Importing files
When the Windows Package Manager imports the JSON file, it attempts to install the specified applications in a

serial fashion. If the application is not available or the application is already installed, it will notify the user of that

case.

In the previous example, the Microsoft.WindowsTerminal was already installed. Therefore the import command

skipped passed the installation.

install command (winget)
 7/6/2021 • 2 minutes to read • Edit Online

 Usage

 Arguments

A RGUM EN T DESC RIP T IO N

-q,--quer y The query used to search for an app.

-?, --help Get additional help on this command.

 Options

The install command of the winget tool installs the specified application. Use the search command to identify

the application you want to install.

The install command requires that you specify the exact string to install. If there is any ambiguity, you will be

prompted to further filter the install command to an exact application.

winget install [[-q] \<query>] [\<options>]

The following arguments are available.

The options allow you to customize the install experience to meet your needs.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/package-manager/winget/install.md

O P T IO N DESC RIP T IO N

-m, --manifest Must be followed by the path to the manifest (YAML) file.
You can use the manifest to run the install experience from a
local YAML file.

-- id Limits the install to the ID of the application.

--name Limits the search to the name of the application.

--moniker Limits the search to the moniker listed for the application.

-v, --version Enables you to specify an exact version to install. If not
specified, latest will install the highest versioned application.

-s, --source Restricts the search to the source name provided. Must be
followed by the source name.

--scope Allows you to specify if the installer should target user or
machine scope.

-e, --exact Uses the exact string in the query, including checking for
case-sensitivity. It will not use the default behavior of a
substring.

- i, -- interactive Runs the installer in interactive mode. The default experience
shows installer progress.

-h, --silent Runs the installer in silent mode. This suppresses all UI. The
default experience shows installer progress.

-- locale Specifies which locale to use (BCP47 format).

-o, -- log Directs the logging to a log file. You must provide a path to
a file that you have the write rights to.

--override A string that will be passed directly to the installer.

- l, -- location Location to install to (if supported).

--force Overrides the installer hash check. Not recommended.

 Example queries

winget install powertoys --version 0.15.2

winget install --id Microsoft.PowerToys

The following example installs a specific version of an application.

The following example installs an application from its ID.

The following example installs an application by version and ID.

winget install --id Microsoft.PowerToys --version 0.15.2

 Multiple selections

winget install --id Git.Git -e

winget install --id Git.Git -e -source winget

 Local install

O P T IO N DESC RIP T IO N

-m, --manifest The path to the manifest of the application to install.

 Log files

 Related topics

If the query provided to winget does not result in a single application, then winget will display the results of

the search. This will provide you with the additional data necessary to refine the search for a correct install.

The best way to limit the selection to one file is to use the id of the application combined with the exact query

option. For example:

If multiple sources are configured, it is possible to have duplicate entries. Specifying a source is required to

further disambiguate.

The manifest option enables you to install an application by passing in a YAML file directly to the client. If the

manifest is a multi-file manifest, the directory containing the files must be used. The manifest option has the

following usage.

Usage: winget install --manifest \<path>

The log files for winget unless redirected, will be located in the following folder : %temp%\AICLI* .log

Use the winget tool to install and manage applications

list command (winget)
 6/30/2021 • 2 minutes to read • Edit Online

 Usage

 Arguments

A RGUM EN T DESC RIP T IO N

-q,--quer y The query used to search for an app.

-?, --help Get additional help on this command.

 Options

O P T IO N DESC RIP T IO N

--id Limits the list to the ID of the application.

The list command of the winget tool displays a list of the applications currently installed on your computer. The

list command will show apps that were installed through the Windows Package Manager as well as apps that

were installed by other means.

The list command will also display if an update is available for an app, and you can use the upgrade command

to update the app.

The list command also supports filters which can be used to limit your list query.

winget list [[-q] \<query>] [\<options>]

The following arguments are available.

The options allow you to customize the list experience to meet your needs.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/package-manager/winget/list.md

--name Limits the list to the name of the application.

--moniker Limits the list to the moniker listed for the application.

-s, --source Restricts the list to the source name provided. Must be
followed by the source name.

--tag Filters results by tags.

--command Filters results by command specified by the application.

-n, --count Limits the number of apps displayed in one query.

- l, -- location Location to list to (if supported).

-e, --exact Uses the exact string in the list query, including checking for
case-sensitivity. It will not use the default behavior of a
substring.

O P T IO N DESC RIP T IO N

 Example queries

winget list --name powertoys

winget list --id Microsoft.PowerToys --source winget

winget list -n 12

 List with update

The following example lists a specific version of an application.

The following example lists all application by ID from a specific source.

The following example limits the output of list to twelve apps.

As stated above, the list command allows you to see what apps you have installed that have updates available.

In the image below, you will notice the preview version of Terminal has an update available.

The list command will show not only the update version available, but the source that the update is available

from.

If there are no updates available, list will only show you the currently installed version and the update column

will not be displayed.

Use the winget tool to list and manage applications

search command (winget)
 5/26/2021 • 2 minutes to read • Edit Online

 Usage

 Arguments

A RGUM EN T DESC RIP T IO N

-q,--quer y The query used to search for an app.

-?, --help Gets additional help on this command.

 Show all

 Search strings

The search command of the winget tool queries the sources for available applications that can be installed.

The search command can show all applications available, or it can be filtered down to a specific application. The

search command is used typically to identify the string to use to install a specific application.

winget search [[-q] \<query>] [\<options>]

The following arguments are available.

If the search command includes no filters or options, it will display all available applications in the default

source. You can also search for all applications in another source if you pass in just the source option.

Search strings can be filtered with the following options.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/package-manager/winget/search.md

O P T IO N DESC RIP T IO N

--id Limits the search to the ID of the application. The ID includes
the publisher and the application name.

--name Limits the search to the name of the application.

--moniker Limits the search to the moniker specified.

--tag Limits the search to the tags listed for the application.

--command Limits the search to the commands listed for the application.

 Search options

O P T IO N DESC RIP T IO N

-e, --exact Uses the exact string in the query, including checking for
case-sensitivity. It will not use the default behavior of a
substring.

-n, --count Restricts the output of the display to the specified count.

-s, --source Restricts the search to the specified source name.

 Related topics

The string will be treated as a substring. The search by default is also case insensitive. For example,

winget search micro could return the following:

Microsoft

microscope

MyMicro

The search commands supports a number of options or filters to help limit the results.

Use the winget tool to install and manage applications

settings command (winget)
 5/26/2021 • 2 minutes to read • Edit Online

NOTE

 Usage

 Updating settings

 source

The settings command of the winget tool allows you to customize your Windows Package Manager client

experience. You can change defaults and try out experimental features that are enabled in your client.

The settings command will launch your default text editor. Windows by default will launch Notepad as an

option. We recommend using a tool like Visual Studio code.

You can easily install Visual Studio Code by typing winget install Microsoft.VisualStudioCode

Launch your default JSON editing tool: winget settings

When you launch the settings for the first time, there will be no settings specified. At the top of the JSON file we

provide a link where you can discover the latest experimental features and settings.

We have also defined a schema for the settings file. This allows you to use TAB to discover settings and syntax if

your JSON editor supports JSON schemas.

The following settings are available for the 1.0 release of the Windows Package Manager.

The source settings involve configuration to the WinGet source.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/package-manager/winget/settings.md
https://code.visualstudio.com/
https://aka.ms/winget-settings

"source": {
 "autoUpdateIntervalInMinutes": 3
},

 autoUpdateIntervalInMinutes

 visual

"visual": {
 "progressBar": "accent"
},

 progressBar

 installBehavior

 preferences and requirements

 scope

"installBehavior": {
 "preferences": {
 "scope": "user"
 }
},

 locale

A positive integer represents the update interval in minutes. The check for updates only happens when a source

is used. A zero will disable the check for updates to a source. Any other values are invalid.

Disable: 0

Default: 5

To manually update the source use winget source update .

The visual settings involve visual elements that are displayed by WinGet

Color of the progress bar that WinGet displays when not specified by arguments.

accent (default)

retro

rainbow

The installBehavior settings affect the default behavior of installing and upgrading (where applicable)

packages.

Some of the settings are duplicated under preferences and requirements .

The preferences setting affects how the various available options are sorted when choosing the one to act

on. For example, the default scope of package installs is for the current user, but if that is not an option then a

machine level installer will be chosen.

The requirements setting filters the options, potentially resulting in an empty list and a failure to install. In

the previous example, a user scope requirement would result in no applicable installers and an error.

Any arguments passed on the command line will effectively override the matching requirement setting for the

duration of that command.

The scope behavior affects the choice between installing a package for the current user or for the entire

machine. The matching parameter is --scope , and uses the same values (user or machine).

The locale behavior affects the choice of installer based on installer locale. The matching parameter is

"installBehavior": {
 "preferences": {
 "locale": ["en-US", "fr-FR"]
 }
},

 telemetry

 disable

"telemetry": {
 "disable": true
},

 network

 downloader

"network": {
 "downloader": "do"
}

 Enabling experimental features

--locale , and uses bcp47 language tag.

The telemetry settings control whether winget writes ETW events that may be sent to Microsoft on a default

installation of Windows.

See details on telemetry, and our primary privacy statement.

If set to true, the telemetry.disable setting will prevent any event from being written by the program.

The network settings influence how winget uses the network to retrieve packages and metadata.

The downloader setting controls which code is used when downloading packages. The default is default , which

may be any of the options based on our determination.

wininet uses the WinINet APIs, while do uses the Delivery Optimization service.

To discover which experimental features are available, go to https://aka.ms/winget-settings where you can see

the experimental features available to you.

https://github.com/microsoft/winget-cli/blob/master/README.md#datatelemetry
https://github.com/microsoft/winget-cli/blob/master/privacy.md
https://docs.microsoft.com/en-us/windows/win32/wininet/about-wininet
https://support.microsoft.com/windows/delivery-optimization-in-windows-10-0656e53c-15f2-90de-a87a-a2172c94cf6d
https://aka.ms/winget-settings

show command (winget)
 5/26/2021 • 2 minutes to read • Edit Online

 Usage

 Arguments

A RGUM EN T DESC RIP T IO N

-q,--quer y The query used to search for an application.

-?, --help Gets additional help on this command.

 Options

O P T IO N DESC RIP T IO N

-m,--manifest The path to the manifest of the application to install.

-- id Filter results by ID.

The show command of the winget tool displays details for the specified application, including details on the

source of the application as well as the metadata associated with the application.

The show command only shows metadata that was submitted with the application. If the submitted application

excludes some metadata, then the data will not be displayed.

winget show [[-q] \<query>] [\<options>]

The following arguments are available.

The following options are available.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/package-manager/winget/show.md

--name Filter results by name.

--moniker Filter results by application moniker.

-v,--version Use the specified version. The default is the latest version.

-s,--source Find the application using the specified source.

-e,--exact Find the application using exact match.

--versions Show available versions of the application.

O P T IO N DESC RIP T IO N

 Multiple selections

 Results of show

 Metadata

VA L UE DESC RIP T IO N

Id Id of the application.

Name Name of the application.

Publisher Publisher of the application.

Version Version of the application.

Author Author of the application.

AppMoniker AppMoniker of the application.

Description Description of the application.

License License of the application.

LicenseUrl The URL to the license file of the application.

Homepage Homepage of the application.

Tags The tags provided to assist in searching.

Command The commands supported by the application.

Channel The details on whether the application is preview or release.

If the query provided to winget does not result in a single application, then winget will display the results of

the search. This will provide you with the additional data necessary to refine the search.

If a single application is detected, the following data will be displayed.

Minimum OS Version The minimum OS version supported by the application.

VA L UE DESC RIP T IO N

 Installer details

VA L UE DESC RIP T IO N

Arch The architecture of the installer.

Language The language of the installer.

Installer Type The type of installer.

Download Url The Url of the installer.

Hash The Sha-256 of the installer.

Scope Displays whether the installer is per machine or per user.

 Related topics
Use the winget tool to install and manage applications

source command (winget)
 5/26/2021 • 2 minutes to read • Edit Online

NOTE

 Usage

 Arguments

A RGUM EN T DESC RIP T IO N

-?, --help Gets additional help on this command.

 Sub commands

SUB C O M M A N D DESC RIP T IO N

add Adds a new source.

The source command is currently for internal use only. Additional sources are not supported at this time.

The source command of the winget tool manages the repositories accessed by Windows Package Manager.

With the source command you can add, remove, list, and update the repositories.

A source provides the data for you to discover and install applications. Only add a new source if you trust it as a

secure location.

winget source \<sub command> \<options>

The following arguments are available.

Source supports the following sub commands for manipulating the sources.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/package-manager/winget/source.md

list Enumerates the list of enabled sources.

update Updates a source.

remove Removes a source.

reset Resets winget back to the initial configuration.

SUB C O M M A N D DESC RIP T IO N

 Options

O P T IO N DESC RIP T IO N

-n,--name The name to identify the source by.

-a,--arg The URL or UNC of the source.

-t,--type The type of source.

-?, --help Gets additional help on this command.

 add

T Y P E DESC RIP T IO N

Microsoft.PreIndexed.Package The type of source <default>.

 list

 list all

The source command supports the following options.

The add sub command adds a new source. This sub command requires the --name option and the name

argument.

Usage: winget source add [-n, --name] \<name> [-a] \<url> [[-t] \<type>]

Example: winget source add --name Contoso https://www.contoso.com/cache

The add sub command also supports the optional type parameter. The type parameter communicates to the

client what type of repository it is connecting to. The following types are supported.

the list sub command enumerates the currently enabled sources. This sub-command also provides details on a

specific source.

Usage: winget source list [-n, --name] \<name>

The list sub-command by itself will reveal the complete list of supported sources. For example:

> C:\winget source list
> Name Arg
> ---
> winget https://winget.azureedge.net/cache

 list source details

> C:\winget source list --name contoso
> Name : contoso
> Type : Microsoft.PreIndexed.Package
> Arg : https://pkgmgr-int.azureedge.net/cache
> Data : AppInstallerSQLiteIndex-int_g4ype1skzj3jy
> Updated: 2020-4-14 17:45:32.000

 update

 update all

 update source

 remove

 reset

 Default repository

In order to get complete details on the source, pass in the name used to identify the source. For example:

Name displays the name to identify the source by. Type displays the type of repo. Arg displays the URL or path

used by the source. Data displays the optional package name used if appropriate. Updated displays the last

date and time the source was updated.

The update sub command forces an update to an individual source or for all.

usage: winget source update [-n, --name] \<name>

The update sub command by itself will request and update to each repo. For example: C:\winget update

The update sub command combined with the --name option can direct and update to an individual source. For

example: C:\winget source update --name contoso

The remove sub command removes a source. This sub command requires the --name option and name

argument in order to identify the source.

Usage: winget source remove [-n, --name] \<name>

For example: winget source remove --name Contoso

The reset sub-command resets the client back to its original configuration. The reset sub-command removes

all sources and sets the source to the default. This sub command should only be used in rare cases.

Usage: winget source reset

For example: winget source reset

Windows Package Manager specifies a default repository. You can identify the repository by using the list

command. For example: winget source list

 Related topics
Use the winget tool to install and manage applications

uninstall command (winget)
 5/26/2021 • 2 minutes to read • Edit Online

 Usage

 Arguments

A RGUM EN T DESC RIP T IO N

-q,--quer y The query used to search for an app.

-?, --help Get additional help on this command.

 Options

O P T IO N DESC RIP T IO N

-m, --manifest Must be followed by the path to the manifest (YAML) file.
You can use the manifest to run the uninstall experience
from a local YAML file.

The uninstall command of the winget tool uninstalls the specified application.

The uninstall command requires that you specify the exact string to uninstall. If there is any ambiguity, you will

be prompted to further filter the uninstall command to an exact application.

winget uninstall [[-q] \<query>] [\<options>]

The following arguments are available.

The options allow you to customize the uninstall experience to meet your needs.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/package-manager/winget/uninstall.md

--id Limits the uninstall to the ID of the application.

--name Limits the search to the name of the application.

--moniker Limits the search to the moniker listed for the application.

-v, --version Enables you to specify an exact version to uninstall. If not
specified, latest will uninstall the highest versioned
application.

-s, --source Restricts the search to the source name provided. Must be
followed by the source name.

-e, --exact Uses the exact string in the query, including checking for
case-sensitivity. It will not use the default behavior of a
substring.

- i, -- interactive Runs the uninstaller in interactive mode. The default
experience shows uninstaller progress.

-h, --silent Runs the uninstaller in silent mode. This suppresses all UI.
The default experience shows uninstaller progress.

-o, -- log Directs the logging to a log file. You must provide a path to
a file that you have the write rights to.

O P T IO N DESC RIP T IO N

 Example queries

winget uninstall --name powertoys --version 0.15.2

winget uninstall --id "{24559D0F-481C-F3BE-8DD0-D908923A38F8}"

 Multiple selections

After you have successfully identified the application intended to uninstall, winget will execute the uninstall

command. In the example below, the name 'orca' and the id was passed in.

The following example uninstalls a specific version of an application.

The following example uninstalls an application using its ID.

If the query provided to winget does not result in a single application to uninstall, then winget will display

multiple results. You can then use additional filters to refine the search for a correct application.

 Uninstalling apps not installed with Windows Package Manager
As mentioned in list, the winget list command will display more than just apps installed with the winget.

Therefore you can use these commands to quickly and easily remove apps from your PC.

In this example, list was used to find the application, and then the id was passed in as part of uninstall.

upgrade command (winget)
 6/3/2021 • 2 minutes to read • Edit Online

 Usage

 Arguments

A RGUM EN T DESC RIP T IO N

-q,--quer y The query used to search for an app.

-?, --help Get additional help on this command.

 Options

O P T IO N DESC RIP T IO N

The upgrade command of the winget tool upgrades the specified application. Optionally, you may use the list

command to identify the application you want to upgrade.

The upgrade command requires that you specify the exact string to upgrade. If there is any ambiguity, you will

be prompted to further filter the upgrade command to an exact application.

winget upgrade [[-q] \<query>] [\<options>]

The following arguments are available.

The options allow you to customize the upgrade experience to meet your needs.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/package-manager/winget/upgrade.md

-m, --manifest Must be followed by the path to the manifest (YAML) file.
You can use the manifest to run the upgrade experience
from a local YAML file.

-- id Limits the upgrade to the ID of the application.

--name Limits the search to the name of the application.

--moniker Limits the search to the moniker listed for the application.

-v, --version Enables you to specify an exact version to upgrade. If not
specified, latest will upgrade the highest versioned
application.

-s, --source Restricts the search to the source name provided. Must be
followed by the source name.

-e, --exact Uses the exact string in the query, including checking for
case-sensitivity. It will not use the default behavior of a
substring.

- i, -- interactive Runs the installer in interactive mode. The default experience
shows installer progress.

-h, --silent Runs the installer in silent mode. This suppresses all UI. The
default experience shows installer progress.

-o, -- log Directs the logging to a log file. You must provide a path to
a file that you have the write rights to.

--override A string that will be passed directly to the installer.

- l, -- location Location to upgrade to (if supported).

--force When a hash mismatch is discovered will ignore the error
and attempt to install the package.

--all Updates all available packages to the latest application.

O P T IO N DESC RIP T IO N

 Example queries

winget upgrade powertoys --version 0.15.2

winget upgrade --id Microsoft.PowerToys

The following example upgrades a specific version of an application.

The following example upgrades an application from its ID.

The following example shows upgrading all apps

winget upgrade --all

 Using list and upgrade

 upgrade --all

NOTE

It is common to use the list command to identify apps in need of an update, and then to use upgrade to install

the latest.

In the example below you will see list identifies that an update is available for

Microsoft.WindowsTerminalPreview, and then the user uses upgrade to update the application.

upgrade --all will identify all the applications with upgrades available. When you run winget upgrade --all

the Windows Package Manager will look for all applications that have updates available and attempt to install

the.

Some applications do not provide a version. They are always latest. Because the Windows Package Manager cannot

identify if there is a newer version of the app, an upgrade will not be possible.

validate command (winget)
 5/26/2021 • 2 minutes to read • Edit Online

 Usage

 Arguments

A RGUM EN T DESC RIP T IO N

--manifest the path to the manifest to be validated.

-?, --help get additional help on this command

 Related topics

The validate command of the winget tool validates a manifest for submitting software to the Microsoft

Community Package Manifest Repositor y on GitHub. The manifest must be a YAML file that follows the

specification.

winget validate [--manifest] \<path>

The following arguments are available.

Use the winget tool to install and manage applications

Submit packages to Windows Package Manager

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/package-manager/winget/validate.md
https://github.com/microsoft/winget-pkgs/YamlSpec.md

Submit packages to Windows Package Manager
 5/26/2021 • 2 minutes to read • Edit Online

 Independent Software Vendor (ISV) or Publisher

 Community member

 Related topics

This section provides guidance about submitting packages to Windows Package Manager.

If you are an ISV or Publisher, you can use Windows Package Manager as a distribution channel for software

packages containing your applications. Windows Package Manager currently supports installers in the following

formats: MSIX, MSI, and EXE.

To submit software packages to Windows Package Manager, follow these steps:

1. Create a package manifest that provides information about your application. Manifests are YAML files that

follow the Windows Package Manager schema.

2. Submit your manifest to the Windows Package Manager repository. This is an open source repository on

GitHub that contains a collection of manifests that the winget tool can access.

If you are a GitHub community member, you may also submit packages to Windows Package Manager following

the steps above.

Optionally, you may also request help to have a package added to the community repository. To do so, create a

new Package Request/Submission issue.

Use the winget tool

Create your package manifest

Submit your manifest to the repository

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/package-manager/package/index.md
https://github.com/microsoft/winget-pkgs
https://github.com/microsoft/winget-pkgs/issues/new/choose

Create your package manifest
 7/6/2021 • 6 minutes to read • Edit Online

 YAML basics

NOTE

 Conventions

 Manifest contents

 Minimal required schema

If you want to submit a software package to the Windows Package Manager repository, start by creating a

package manifest. The manifest is a YAML file that describes the application to be installed.

This article describes the contents of a package manifest for Windows Package Manager.

The YAML format was chosen for package manifests because of its relative ease of human readability and

consistency with other Microsoft development tools. If you are not familiar with YAML syntax, you can learn the

basics at Learn YAML in Y Minutes.

Manifests for Windows Package Manager currently do not support all YAML features. Unsupported YAML features

include anchors, complex keys, and sets.

These conventions are used in this article:

To the left of : is a literal keyword used in manifest definitions.

To the right of : is a data type. The data type can be a primitive type like str ing or a reference to a rich

structure defined elsewhere in this article.

The notation [datatype] indicates an array of the mentioned data type. For example, [string] is an

array of strings.

The notation { datatype : datatype } indicates a mapping of one data type to another. For example,

{ string: string } is a mapping of strings to strings.

A package manifest must include a set of required items, and can also include further optional items that can

help improve the customer experience of installing your software. This section provides brief summaries of the

required manifest schema and complete manifest schemas, and examples of each.

Each field in the manifest file must be Pascal-cased and cannot be duplicated.

For a complete list and descriptions of items in a manifest, see the manifest specification in the

https://github.com/microsoft/winget-cli repository.

As specified in the singleton JSON schema, only certain fields are required. The minimal supported YAML file

would look like the example below. The singleton format is only valid for packages containing a single installer

and a single locale. If more than one installer or locale is provided, the multiple YAML file format and schema

must be used.

The partitioning scheme was added to help with GitHub's UX. Folders with thousands of children do not render

well in the browser.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/package-manager/package/manifest.md
https://learnxinyminutes.com/docs/yaml/
https://github.com/microsoft/winget-cli/blob/master/doc/ManifestSpecv1.0.md
https://github.com/microsoft/winget-cli
https://github.com/microsoft/winget-cli/blob/master/schemas/JSON/manifests/v1.0.0/manifest.singleton.1.0.0.json

PackageIdentifier: # Publisher.package format.
PackageVersion: # Version numbering format.
PackageLocale: # BCP 47 format (e.g. en-US)
Publisher: # The name of the publisher.
PackageName: # The name of the application.
License: # The license of the application.
ShortDescription: # The description of the application.
Installers:
 - Architecture: # Enumeration of supported architectures.
 InstallerType: # Enumeration of supported installer types (exe, msi, msix, inno, wix, nullsoft, appx).
 InstallerUrl: # Path to download installation file.
 InstallerSha256: # SHA256 calculated from installer.
ManifestType: # The manifest file type
ManifestVersion: 1.0.0

 Multiple manifest files

PackageIdentifier: "Microsoft.WindowsTerminal"
PackageVersion: "1.6.10571.0"
DefaultLocale: "en-US"
ManifestType: "version"
ManifestVersion: "1.0.0"

NOTE

 Installer switches

Minimal required schema

Example

To provide the best user experience, manifests should contain as much meta-data as possible. In order to

separate concerns for validating installers and providing localized metadata, manifests should be split into

multiple files. The minimum number of YAML files for this kind of manifest is three. Additional locales should

also be provided.

A version file.

The default locale file.

An installer file.

Additional locale files.

The example below shows many optional metadata fields and multiple locales. Note the default locale has more

requirements than additional locales. In the show command, any required fields that aren't provided for

additional locales will display fields from the default locale.

Version file example

Default locale file example

Additional locale file example

Installer file example

Path: manifests / m / Microsoft / WindowsTerminal / 1.6.10571.0 / Microsoft.WindowsTerminal.yaml

If your installer is an .exe and it was built using Nullsoft or Inno, you may specify those values instead. When Nullsoft or

Inno are specified, the client will automatically set the silent and silent with progress install behaviors for the installer.

You can often figure out what silent Switches are available for an installer by passing in a -? to the installer

https://github.com/microsoft/winget-cli/blob/master/schemas/JSON/manifests/v1.0.0/manifest.version.1.0.0.json
https://github.com/microsoft/winget-cli/blob/master/schemas/JSON/manifests/v1.0.0/manifest.defaultLocale.1.0.0.json
https://github.com/microsoft/winget-cli/blob/master/schemas/JSON/manifests/v1.0.0/manifest.installer.1.0.0.json
https://github.com/microsoft/winget-cli/blob/master/schemas/JSON/manifests/v1.0.0/manifest.locale.1.0.0.json

IN STA L L ER C O M M A N D DO C UM EN TAT IO N

MSI /q MSI Command-Line Options

InstallShield /s InstallShield Command-Line
Parameters

Inno Setup /SILENT or /VERYSILENT Inno Setup documentation

Nullsoft /S Nullsoft Silent Installers/Uninstallers

 Tips and best practices

from the command line. Here are some common silent Switches that can be used for different installer types.

The package identifier must be unique. You cannot have multiple submissions with the same package

identifier. Only one pull request per package version is allowed.

Avoid creating multiple publisher folders. For example, do not create "Contoso Ltd." if there is already a

"Contoso" folder.

All tools must support a silent install. If you have an executable that does not support a silent install, then we

cannot provide that tool at this time.

Provide as many fields as possible. The more meta-data you provide the better the user experience will be. In

some cases, the fields may not yet be supported by the Windows Package Manager client (winget.exe). For

example, the AppMoniker field is optional. However, if you include this field, customers will see results

associated with the AppMoniker value when performing the search command (for example, vscode for

Visual Studio Code). If there is only one app with the specified AppMoniker value, customers can install

your application by specifying the moniker rather than the fully qualified package identifier.

The length of strings in this specification should be limited to 100 characters before a line break.

The PackageName should match the entry made in Add / Remove Programs to help the correlation with

manifests to support expor t , and upgrade.

The Publisher should match the entry made in Add / Remove Programs to help the correlation with

manifests to support expor t , and upgrade.

Package installers in MSI format use product codes to uniquely identify applications. The product code for a

given version of a package should be included in the manifest to help ensure the best upgrade experience.

Limit the length of strings in your manifest to 100 characters before a line break.

When more than one installer type exists for the specified version of the package, an instance of

InstallerType can be placed under each of the Installers .

https://docs.microsoft.com/en-us/windows/win32/msi/command-line-options
https://docs.flexera.com/installshield19helplib/helplibrary/IHelpSetup_EXECmdLine.htm
https://jrsoftware.org/ishelp/
https://nsis.sourceforge.io/Docs/Chapter4.html#silent
https://docs.microsoft.com/en-us/windows/win32/msi/product-codes

Submit your manifest to the repository
 5/26/2021 • 3 minutes to read • Edit Online

IMPORTANT

 Third-party repositories

 Manifest validation

 How to submit your manifest

 Step 1: Validate your manifest

winget validate \<manifest-file>

 Step 2: Clone the repository

After you create a package manifest that describes your application, you're ready to submit your manifest to the

Windows Package Manager repository. This a public-facing repository that contains a collection of manifests

that the winget tool can access. To submit your manifest, you'll upload it to the open source

https://github.com/microsoft/winget-pkgs repository on GitHub.

After you submit a pull request to add a new manifest to the GitHub repository, an automated process will

validate your manifest file and check to make sure the package complies with the Windows Package Manager

polices and is not known to be malicious. If this validation is successful, your package will be added to the

public-facing Windows Package Manager repository so it can be discovered by the winget client tool. Note the

distinction between the manifests in the open source GitHub repository and the public-facing Windows Package

Manager repository.

Microsoft reserves the right to refuse a submission for any reason.

There are currently no known third party repositories. Microsoft is working with multiple partners to develop

protocols or an API to enable third party repositories.

When you submit a manifest to the https://github.com/microsoft/winget-pkgs repository on GitHub, your

manifest will be automatically validated and evaluated for the safety of the Windows ecosystem. Manifests may

also be reviewed manually.

For more information about the validation process, see Windows Package Manager validation process.

To submit a manifest to the repository, follow these steps.

The winget tool provides the validate command to confirm that you have created your manifest correctly. To

validate your manifest, use this command.

If your validation fails, use the errors to locate the line number and make a correction. After your manifest is

validated, you can submit it to the repository.

Next, create a fork of the repository and clone it.

1. Go to https://github.com/microsoft/winget-pkgs in your browser and click Fork .

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/package-manager/package/repository.md
https://github.com/microsoft/winget-pkgs
https://github.com/microsoft/winget-pkgs
https://github.com/microsoft/winget-pkgs

 Step 3: Add your manifest to the local repository

 Step 4: Submit your manifest to the remote repository

 Step 5: Create a pull request

git clone \<your-fork-name>

git checkout -b \<branch-name>

2. From a command line environment such as the Windows Command Prompt or PowerShell, use the

following command to clone your fork.

3. If you are making multiple submissions, make a branch instead of a fork. We currently allow only one

manifest file per submission.

You must add your manifest file to the repository in the following folder structure:

manifests / letter / publisher / application / version / Yaml file

The manifests folder is the root folder for all manifests in the repository.

The letter folder is the first letter of the publisher name.

The publisher folder is the name of the company that publishes the software. For example, Microsoft.

The application folder is the name of the application or tool. For example, VSCode.

The version folder is the version of the application or tool. For example, 1 .0 .0 .

Yaml File is the file name of the manifest. The file name must be set to the name and publisher of the

application. For example, Contoso.ContosoApp.yaml .

The PackageIdentifier value in the manifest must match the publisher and application names in the manifest

folder path, and the PackageVersion value in the manifest must match the version in the file name. For more

information, see Create your package manifest.

You're now ready to push your new manifest to the remote repository.

git add manifests\C\Contoso\ContosoApp\1.0.0\Contoso.ContosoApp.yaml

git commit -m "Submitting ContosoApp version 1.0.0.yaml"

git push

1. Use the add command to prepare for submission.

2. Use the commit command to commit the change and provide information on the submission.

3. Use the push command to push the changes to the remote repository.

After you push your changes, return to https://github.com/microsoft/winget-pkgs and create a pull request to

merge your fork or branch to the main branch.

https://github.com/microsoft/winget-pkgs

 Submission process
When you create a pull request, this will start an automated process that validates the manifests and verifies

your pull request. During this process we will run tests against the installer and installed binaries to validate the

submission.

We add labels to your pull request so you can track its progress. For more information, see Validation process.

Once complete, the submission will be automatically merged and the application will get added to the Windows

Package Manager catalog.

If there is an error during the process, you will be notified and our labels and bot will assist you in fixing your

submission. For the list of common errors, see Validation process.

Windows Package Manager validation process
 5/26/2021 • 7 minutes to read • Edit Online

 Submission expectations

 Pull request labels

 Status labels

L A B EL DETA IL S

Azure-Pipeline-Passed The manifest has completed the test pass. It is waiting for
approval. If no issues are encountered during the test pass it
will automatically be approved. If a test fails, it may be
flagged for manual review.

Blocking-Issue This label indicates that the pull request cannot be approved
because there is a blocking issue. You can often tell what the
blocking issue is by the included error label.

Needs: Attention This label indicates that the pull request needs to be
investigated by the Windows Package Manager
development team. This is either due to a test failure that
needs manual review, or a comment added to the pull
request by the community.

When you create a pull request to submit your manifest to the Windows Package Manager repository, this will

start an automation process that validates the manifest and processes your pull request. GitHub labels are used

to share progress and allow you to communicate with us.

All application submissions to the Windows Package Manager repository should be well-behaved and adhere to

the Windows Package Manager repository policies. Here are some expectations for submissions:

The manifest complies with the schema requirements.

All URLs in the manifest lead to safe websites.

The installer and application are virus free. The package may be identified as malware by mistake. If you

believe it is a false positive you can submit the installer to the Microsoft Defender team for analysis.

The application installs and uninstalls correctly for both administrators and non-administrators.

The installer supports non-interactive modes.

All manifest entries are accurate and not misleading.

The installer comes directly from the publisher's website.

For a complete list of the policies, see Windows Package Manager policies.

During validation, we apply a series of labels to pull requests to communicate progress. Some labels will direct

you to take action, while others will be directed to the Windows Package Manager engineering team.

The following table describes the status labels you might encounter.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/package-manager/package/winget-validation.md
https://www.microsoft.com/wdsi/filesubmission

Needs: author feedback Indicates there is a failure with the submission. We will
reassign the pull request back to you. If you do not address
the issue within 10 days, the bot will close the pull request.
Needs: author feedback labels are typically added when
there was a failure with the pull request that should be
updated, or if the person reviewing the pull request has a
question.

Validation-Completed Indicates that the test pass has been completed successfully
and your pull request will be merged.

L A B EL DETA IL S

 Error labels

L A B EL DETA IL S

Binar y-Validation-Error The application included in this pull request failed to pass the
Installers Scan test. This test is designed to ensure that
the application installs on all environments without
warnings. For more details on this error, see Binary
validation errors.

Error-Analysis-Timeout The Binar y-Validation-Test test timed out. The pull
request will get assigned to a Windows Package Manager
engineer to investigate.

Error-Hash-Mismatch The submitted manifest could not be processed because the
InstallerSha256 hash provided for the InstallerURL did
not match. Update the InstallerSha256 in the pull request
and try again.

Error-Installer-Availability The validation service was unable to download the installer.
This may be related to Azure IP ranges being blocked, or the
installer URL may be incorrect. Check that the InstallerURL
is correct and try again. If you feel this has failed in error,
add a comment and the pull request will get assigned to a
Windows Package Manager engineer to investigate.

Manifest-Path-Error The manifest files must be put into a specific folder structure.
This label indicates a problem with the path of your
submission. For example, the folder structure does not have
the required format. Update your manifest and path
resubmit your pull request.

Manifest-Validation-Error The submitted manifest contains a syntax error. Address the
syntax issue with the manifest and re-submit. For details on
the manifest format and schema, see required format.

PullRequest-Error The pull request is invalid because not all files submitted are
under manifest folder or there is more than one package or
version in the pull request. Update your pull request to
address the issue and try again.

The following table describes the error labels you might encounter. Not all of the error cases will be assigned

to you immediately. Some may trigger manual validation.

URL-Validation-Error The URLs Validation Test could not locate the URL and
responded with a HTTP error status code (403 or 404), or
the URL reputation test failed. You can identify which URL is
in question by looking at the pull request check details. To
address this issue, update the URLs in question to resolve
the HTTP error status code. If the issue is not due to an
HTTP error status code, you can submit the URL for review
to avoid the reputation failure.

Validation-Defender-Error During dynamic testing, Microsoft Defender reported a
problem. To reproduce this problem, install your application,
then run a Microsoft Defender full scan. If you can reproduce
the problem, fix the binary or submit it for analysis for false
positive assistance. If you are unable to reproduce the
problem, add a comment to get the Windows Package
Manager engineers to investigate.

Validation-Domain The test has determined the domain if the InstallerURL
does not match the domain expected. The Windows Package
Manager policies requires that the InstallerUrl comes directly
from the ISV's release location. If you believe this is a false
detection, add a comment to the pull request to get the
Windows Package Manager engineers to investigate.

Validation-Error Validation of the Windows Package Manager failed during
manual approval. Look at the accompanying comment for
next steps.

Validation-Executable-Error During installation testing, the test was unable to locate the
primary application. Make sure the application installs
correctly on all platforms. If your application does not install
an application, but should still be included in the repository,
add a comment to the pull request to get the Windows
Package Manager engineers to investigate.

Validation-Hash-Verification-Failed During installation testing, the application fails to install
because the InstallerSha256 no longer matches the
InstallerURL hash. This can occur if the application is
behind a vanity URL and the installer was updated without
updating the InstallerSha256 . To address this issue,
update the InstallerSha256 associated with the
InstallerURL and submit again.

Validation-HTTP-Error The URL used for the installer does not use the HTTPS
protocol. Update the InstallerURL to use HTTPS and
resubmit the Pull Request.

Validation-Indirect-URL The URL is not coming directly from the ISVs server. Testing
has determined a redirector has been used. This is not
allowed because the Windows Package Manager policies
require that the InstallerUrl comes directly from the ISV's
release location. Remove the redirection and resubmit.

Validation-Installation-Error During manual validation of this package, there was a
general error. Look at the accompanying comment for next
steps.

L A B EL DETA IL S

https://docs.microsoft.com/en-us/troubleshoot/iis/http-status-code
https://www.microsoft.com/wdsi/filesubmission/
https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/defender-endpoint-false-positives-negatives?#part-4-submit-a-file-for-analysis

Validation-Merge-Conflict This package could not be validated due to a merge conflict.
Please address the merge conflict and resubmit your pull
request.

Validation-MSIX-Dependency The MSIX package has a dependency on package that could
not be resolved. Update the package to include the missing
components or add the dependency to the manifest file and
resubmit the pull request.

Validation-Unapproved-URL The test has determined the domain if the InstallerURL
does not match the domain expected. The Windows Package
Manager policies requires that the InstallerUrl comes directly
from the ISV's release location.

Validation-Unattended-Failed During installation, the test timed out. This most likely is due
to the application not installing silently. It could also be due
to some other error being encountered and stopping the
test. Verify that you can install your manifest without user
input. If you need assistance, add a comment to the pull
request and the Windows Package Manager engineers will
investigate.

Validation-Uninstall-Error During uninstall testing, the application did not clean up
completely following uninstall. Look at the accompanying
comment for more details.

Validation-VCRuntime-Dependency The package has a dependency on the C++ runtime that
could not be resolved. Update the package to include the
missing components or add the dependency to the manifest
file and resubmit the pull request.

L A B EL DETA IL S

 Content policy labels

L A B EL DETA IL S

Policy-Test-2.1 See General Content Requirements.

Policy-Test-2.2 See Content Including Names, Logos, Original and Third
Party

Policy-Test-2.3 See Risk of Harm.

Policy-Test-2.4 See Defamatory, Libelous, Slanderous and Threatening.

Policy-Test-2.5 See Offensive Content.

Policy-Test-2.6 See Alcohol, Tobacco, Weapons and Drugs.

Policy-Test-2.7 See Adult Content.

Policy-Test-2.8 See Illegal Activity.

The following table lists content policy labels . If one of these labels is added, something in the manifest

metadata triggered additional manual content review to ensure that the metadata is following the Windows

Package Manager policies.

Policy-Test-2.9 See Excessive Profanity and Inappropriate Content.

Policy-Test-2.10 See Country/Region Specific Requirements.

Policy-Test-2.11 See Age Ratings.

Policy-Test-2.12 See User Generated Content.

L A B EL DETA IL S

 Internal labels

L A B EL DETA IL S

Internal-Error-Domain An error occurred during the domain validation of the URL.

Internal-Error-Dynamic-Scan An error occurred during the validation of the installed
binaries.

Internal-Error-Keyword-Policy An error occurred during the validation of the manifest.

Internal-Error-Manifest An error occurred during the validation of the manifest.

Internal-Error-NoArchitectures An error occurred because the test could not determine the
architecture if the application.

Internal-Error-NoSuppor tedArchitectures An error occurred because the current architecture is not
supported.

Internal-Error-PR An error occurred during the processing of the pull request.

Internal-Error-Static-Scan An error occurred during static analysis of the installers.

Internal-Error-URL An error occurred during reputation validation of the
installers.

Internal-Error A generic failure or unknown error was encountered during
the test pass.

The following table lists internal error labels. When internal errors are encountered, your pull request will be

assigned to the Windows Package Manager engineers to investigate.

Troubleshooting submissions to Windows Package
Manager

 5/26/2021 • 2 minutes to read • Edit Online

 Walkthrough of investigating a failure

When Windows Package Manager is processing the manifest files in the pipeline, it displays labels. If your pull

request fails then then you may need to investigate to understand the failure better.

This article walks you through how you can get more information on your pull request failure.

1. When a pull request fails, it indicates the failure at the bottom of the web page. It will indicate a failure

with the string Some checks were not successful . Click the Details link.

.

2. After you click Details , you will go to an Azure Pipelines page. Click the link with the string 0 errors / 0

warnings .

.

3. The next page lists the job that failed. In the following screenshot, the failed job is Manifest Content

Validation. Click the failed job.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/package-manager/package/winget-validation-troubleshooter.md

.

4. The next page displays the output for the failed job. You can use this information to debug the issue. In

the following example, the failure was during Installation Validation task. The output should help you

identify the change that needs to be made to fix the manifest.

.

Binary validation errors
 5/26/2021 • 2 minutes to read • Edit Online

 Understanding the Installers Scan test

 What to do if you see the Binary-Validation-Error label

 What if I cannot remove that code?

If your pull request fails to pass the Installers Scan test and is given the Binar y-Validation-Error label, this

indicates that your application failed to install on all environments. This article provides more background and

guidance about this error.

Windows Package Manager goes to great lengths to create an excellent user experience when installing

applications. In order to do this, we must ensure that all applications install on PCs without errors regardless of

environment.

To that end, a key test we use for the Windows Package Manager is to ensure that all installers will install

without warnings on a variety of popular antivirus configurations. While Windows provides Microsoft Defender

as a built-in antivirus program, many enterprise customers and users employ a wide range of antivirus software.

Therefore, each submission to the Windows Package Manager will be run through several antivirus programs.

These programs all have different virus detection algorithms for identifying Potentially unwanted application

(PUA) and malware.

If an application fails validation, Microsoft will first attempt to verify that the flagged software is not a false

positive with the antivirus vendors. In many cases, after notification and validation, the antivirus vendor will

update their algorithm and the application will pass.

In some cases, the code anomaly detected is not able to be determined to be a false positive by the antivirus

vendors. In this case the application cannot be added to the Windows Package Manager repository, and the pull

request will be rejected with a Binar y-Validation-Error label.

If the Binar y-Validation-Error label is applied to your pull request, update your software to remove the code

detected as PUA.

Occasionally, genuine tools used for debugging and low-level activities will appear as PUA to the antivirus

vendors. This is because the code necessary to do the debugging will have a similar signature to unwanted

software. Even though this is a legitimate use of that coding practice, unfortunately we are unable to allow those

applications into the Windows Package Manager repository.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/package-manager/package/binary-validation-errors.md
https://docs.microsoft.com/en-us/windows/security/threat-protection/intelligence/criteria

Windows Package Manager repository policies
 7/6/2021 • 13 minutes to read • Edit Online

 Table of Contents

Document version: 1 .0

Document date: May 22, 2021

Effective date: May 22, 2021

Thank you for your interest in providing a Product to the Windows Package Manager repository.

Product refers to content in whatever form including, but not limited to, apps, games, titles, and any

additional content sold or offered from within a Product.

Submission refers to a pull request of manifest files and includes but is not limited to the Product and

metadata about the Product.

A few principles to get you started:

Offer unique and distinct value within your Submission. Provide a compelling reason to download the

Product from the Windows Package Manager repository.

Don’t mislead our customers about what your Submission can do, who is offering it, etc.

Don’t attempt to cheat customers, the system or the ecosystem. There is no place in the repository for any

kind of fraud, be it ratings and review manipulation, credit card fraud or other fraudulent activity.

Adhering to these policies should help you make choices that enhance your Submission's appeal and audience.

Your Submissions are crucial to the experience of hundreds of millions of customers. We can't wait to see what

you create and want to help deliver your Submissions to the world.

If you have feedback on the policies or Windows Package Manager, let us know by commenting in our GitHub

issues forum

Product Policies:

1.1 Distinct Function & Value; Accurate Representation

1.2 Security

1.3 Product is Testable

1.4 Usability

1.5 Personal Information

1.6 Capabilities

1.7 Localization

1.8 Financial Transactions

1.9 Notifications

1.10 Advertising Conduct and Content

Content Policies:

2.1 General Content Requirements

2.2 Content Including Names, Logos, Original and Third Party

2.3 Risk of Harm

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/package-manager/package/windows-package-manager-policies.md
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request
https://www.github.com/microsoft/winget-pkgs
https://www.github.com/microsoft/winget-cli/issues

 Product Policies
 1.1 Distinct Function & Value; Accurate Representation

 1.1.1

 1.1.2

 1.1.3

 1.1.4

 1.2 Security

 1.2.1

 1.2.2

 1.2.3

 1.3 Product is Testable

2.4 Defamatory, Libelous, Slanderous and Threatening

2.5 Offensive Content

2.6 Alcohol, Tobacco, Weapons and Drugs

2.7 Adult Content

2.8 Illegal Activity

2.9 Excessive Profanity and Inappropriate Content

2.10 Country/Region Specific Requirements

2.11 Age Ratings

2.12 User Generated Content

The Product and its associated metadata, including but not limited to the app title, description, screenshots,

trailers, content rating and Product category, must accurately and clearly reflect the source, functionality, and

features of the Product.

All aspects of the Product should accurately describe the functions, features and any important limitations of the

Product.

Tags may not exceed 16 unique tags and should be relevant to the Product.

The Product must have distinct and informative metadata and must provide a valuable and quality user

experience.

The InstallerUrl must be the ISV's release location for the Product. Products from download websites will not be

allowed.

The Product must not jeopardize or compromise user security, or the security or functionality of the device,

system or related systems.

The Product must not attempt to change or extend its described functionality through any form of dynamic

inclusion of code that is in violation of Windows Package Manager Policies. The Product should not, for example,

download a remote script and subsequently execute that script in a manner that is not consistent with the

described functionality.

The Product must not contain or enable malware as defined by the Microsoft criteria for Unwanted and

Malicious Software.

The Product may contain fully integrated middleware (such as third-party cross-platform engines and third-

party analytics services).

The Product may depend on non-integrated software (such as another Product, module, or service) to deliver its

primary functionality.

https://github.com/microsoft/winget-cli/blob/master/schemas/JSON/manifests/v1.0.0/manifest.defaultLocale.1.0.0.json
https://github.com/microsoft/winget-cli/blob/master/schemas/JSON/manifests/v1.0.0/manifest.defaultLocale.1.0.0.json
https://docs.microsoft.com/en-us/windows/security/threat-protection/intelligence/criteria

 1.4 Usability

 1.4.1

 1.4.2

 1.4.3

 1.5 Personal Information

 1.5.1

 1.5.2

 1.5.3

 1.5.4

 1.5.5

The Product must be testable. If it is not possible to test your submitted Product for any reason your Product

may fail this requirement.

The Product should meet usability standards, including, but not limited to, those listed in the subsections below.

The Product should support the devices and platforms on which they are downloaded, including compatibility

with the software, hardware and screen resolution requirements specified by the Product. If the Product is

downloaded on a device with which it is not compatible, it should detect that at launch and display a message to

the customer detailing the requirements.

The Product should continue to run and remain responsive to user input. Products should shut down gracefully

and not close unexpectedly. The Product should handle exceptions raised by any of the managed or native

system APIs and remain responsive to user input after the exception is handled.

The Product should start up promptly and must stay responsive to user input.

The following requirements apply to Products that access Personal Information. Personal Information includes

all information or data that identifies or could be used to identify a person, or that is associated with such

information or data.

If the Product accesses, collects or transmits Personal Information, or if otherwise required by law, it should

maintain a privacy policy. The submission, should include the PrivacyUrl which links to the privacy policy of the

Product.

If the Product publishes the Personal Information of customers of the Product to an outside service or third

party, the Product should only do so after obtaining opt-in consent from those customers. Opt-in consent means

the customer gives their express permission in the Product user interface for the requested activity, after the

Product has:

Described to the customer how the information will be accessed, used or shared, indicating the types of

parties to whom it is disclosed, and

Provided the customer a mechanism in the Product user interface through which they can later rescind this

permission and opt-out.

If the Product publishes a person’s Personal Information to an outside service or third party through the Product

or its metadata, but the person whose information is being shared is not a customer of the Product, the Product

must obtain express written consent to publish that Personal Information, and must permit the person whose

information is shared to withdraw that consent at any time. If the Product provides a customer with access to

another person’s Personal Information, this requirement would also apply.

If the Product collects, stores or transmits Personal Information, it must do so securely, by using modern

cryptography methods.

The Product must not collect, store or transmit highly sensitive personal information, such as health or financial

data, unless the information is related to the Product’s functionality. The Product must also obtain express user

https://github.com/microsoft/winget-cli/blob/master/schemas/JSON/manifests/v1.0.0/manifest.defaultLocale.1.0.0.json

 1.5.6

 1.5.7

 1.6 Capabilities

 1.7 Localization

 1.8 Financial Transactions

 1.8.1

 1.8.2

 1.8.3

consent before collecting, storing or transmitting such information. The Product’s privacy policy must clearly tell

the user when and why it is collecting Personal Information and how it will be used.

If the Product supports Microsoft identity authentication it must do so only by using Microsoft-approved

methods.

Products that receive device location must provide settings that allow the user to enable and disable the

Product's access to and use of location from the Location Service API.

If the Product declares the use of capabilities, then the capabilities the Product declares must legitimately relate

to the functions of the Product. The Product must not circumvent operating system checks for capability usage.

If the Product you should provide localized all languages that it supports. The experience provided by a product

must be reasonably similar in all languages that it supports.

If your product includes in-product purchase, subscriptions, virtual currency, billing functionality or captures

financial information, the following requirements apply:

In-product offerings sold in your product cannot be converted to any legally valid currency (for example, USD,

Euro, etc.) or any physical goods or services.

The Product must use a secure purchase API for purchases of physical goods or services, and a secure purchase

API for payments made in connection with real world gambling or charitable contributions. If the Product is

used to facilitate or collect charitable contributions or to conduct a promotional sweepstakes or contest, it must

do so in compliance with applicable law. The Product must also state clearly that Microsoft is not the fundraiser

or sponsor of the promotion.

The Product must use a secure purchase API to receive voluntary donations from users.

The following requirements apply to your use of a secure purchase API:

At the time of the transaction or when the Product collects any payment or financial information from the

customer, the Product must identify the commerce transaction provider, authenticate the user, and obtain

user confirmation for the transaction.

The product can offer the user the ability to save this authentication, but the user must have the ability to

either require an authentication on every transaction or to turn off in-product transactions.

If the product collects credit card information or uses a third-party payment processor that collects credit

card information, the payment processing must meet the current PCI Data Security Standard (PCI DSS).

The product and its associated metadata must provide information about the types of in-product purchases

offered and the range of prices. The Product not mislead customers and must be clear about the nature of the

in-product promotions and offerings including the scope and terms of any trial experiences. If the Product

restricts access to user-created content during or after a trial, it must notify users in advance. In addition, the

Product must make it clear to users that they are initiating a purchase option in the Product.

If your game offers “loot boxes” or other mechanisms that provide randomized virtual items, then you must

disclose the odds of receiving each item to customers prior to purchase. These disclosures may appear : in-

 10.8.4

 1.9 Notifications

 1.10 Advertising Conduct and Content

 1.10.1

 Content Policies

 2.1 General Content Requirements

 2.2 Content Including Names, Logos, Original and Third Party

 2.3 Risk of Harm
 2.3.1

 2.3.2

product, such as in an in-app store, on the Microsoft Store Product Description Page (PDP), and/or on a

developer or publisher website, with a link from the Store Product Description Page (PDP) and/or in-app.

All pricing, including sales or discounting, for your digital products or services shall comply with all applicable

laws, regulations and regulatory guidelines, including without limitation, the Federal Trade Commission Guides

Against Deceptive Pricing.

If the Product supports notifications, then the Product must respect system settings for notifications and remain

functional when they are disabled. This includes the presentation of ads and notifications to the customer, which

must also be consistent with the customer’s preferences, whether the notifications are provided by the Microsoft

Push Notification Service (MPNS), Windows Push Notification Service (WNS) or any other service. If the

customer disables notifications, either on an Product-specific or system-wide basis, the Product must remain

functional.

For all advertising related activities, the following requirements apply:

The primary purpose of the Product should not be to get users to click ads.

The Product may not do anything that interferes with or diminishes the visibility, value, or quality of any ads

it displays.

The Product must respect advertising ID settings that the user has selected.

All advertising must be truthful, non-misleading and comply with all applicable laws, regulations, and

regulatory guidelines.

The following policies apply to content and metadata (including publisher name, Product name, Product icon,

Product description, Product screenshots, Product trailers and trailer thumbnails, and any other Product

metadata) offered for distribution in the Windows Package Manager repository. Content means the Product

name, publisher name, Product icon, Product description, the images, sounds, videos and text contained in the

Product, the tiles, notifications, error messages or ads exposed through the Product, and anything that’s

delivered from a server or that the Product connects to. Because Product and the Windows Package Manager

repository are used around the world, these requirements will be interpreted and applied in the context of

regional and cultural norms.

Metadata and other content you submit to accompany your submission may contain only content that would

merit a rating of PEGI 12, ESRB EVERYONE 10+, or lower.

All content in the Product and associated metadata must be either originally created by the application provider,

appropriately licensed from the third-party rights holder, used as permitted by the rights holder, or used as

otherwise permitted by law.

The Product must not contain any content that facilitates or glamorizes the following real world activities: (a)

extreme or gratuitous violence; (b) human rights violations; (c) the creation of illegal weapons; or (d) the use of

weapons against a person, animal, or real or personal property.

https://www.ecfr.gov/cgi-bin/text-idx?SID=676bd39fe43a808fcb417973b3d0247e&mc=true&tpl=/ecfrbrowse/Title16/16cfr233_main_02.tpl

 2.4 Defamatory, Libelous, Slanderous and Threatening

 2.5 Offensive Content

 2.6 Alcohol, Tobacco, Weapons and Drugs

 2.7 Adult Content

 2.8 Illegal Activity

 2.9 Excessive Profanity and Inappropriate Content

 2.10 Country/Region Specific Requirements

 2.11 Age Ratings

 2.11.1

 2.12 User Generated Content

The Product must not: (a) pose a safety risk to, nor result in discomfort, injury or any other harm to end users or

to any other person or animal; or (b) pose a risk of or result in damage to real or personal property. You are

solely responsible for all Product safety testing, certificate acquisition, and implementation of any appropriate

feature safeguards. You will not disable any platform safety or comfort features, and you must include all legally

required and industry-standard warnings, notices, and disclaimers in the Product.

The Product must not contain any content that is defamatory, libelous, slanderous, or threatening.

The Product and associated metadata must not contain potentially sensitive or offensive content. Content may

be considered sensitive or offensive in certain countries/regions because of local laws or cultural norms. In

addition, the Product and associated metadata must not contain content that advocates discrimination, hatred,

or violence based on considerations of race, ethnicity, national origin, language, gender, age, disability, religion,

sexual orientation, status as a veteran, or membership in any other social group.

The Product must not contain any content that facilitates or glamorizes excessive or irresponsible use of alcohol

or tobacco Products, drugs, or weapons.

The Product must not contain or display content that a reasonable person would consider pornographic or

sexually explicit.

The Product must not contain content or functionality that encourages, facilitates or glamorizes illegal activity in

the real world.

The Product must not contain excessive or gratuitous profanity.

The Product must not contain or display content that a reasonable person would consider to be obscene.

Content that is offensive in any country/region to which the Product is targeted is not allowed. Content may be

considered offensive in certain countries/regions because of local laws or cultural norms. Examples of

potentially offensive content in certain countries/regions include the following:

China

Prohibited sexual content

Disputed territory or region references

Providing or enabling access to content or services that are illegal under applicable local law

The Product should have a age rating that would merit a rating of PEGI 12, ESRB EVERYONE 10+, or lower.

If the Product provides content (such as user-generated, retail or other web-based content) that might be

appropriate for a higher age rating than its assigned rating, you must enable users to opt in to receiving such

content by using a content filter or by signing in with a pre-existing account.

User Generated Content (UGC) is content that users contribute to an app or Product and which can be viewed or

accessed by other users in an online state. If the Product contains UGC, the Product should:

 See also

Publish and make available to users a Product terms of service and/or content guidelines for User Generated

Content either in Product or on the Product website.

Provide a means for users to report inappropriate content within the Product to the developer for review and

removal/disablement if in violation of content guidelines and/or implement a method for proactive detection

of inappropriate or harmful UGC.

Remove or disable UGC when requested by Microsoft.

Change history for Windows Package Manager policies

Windows Package Manager Code of Conduct

Windows Package Manager Contributing requirements

https://github.com/microsoft/winget-pkgs/blob/master/CODE_OF_CONDUCT.md
https://github.com/microsoft/winget-pkgs/blob/master/README.md

Change history for Windows Package Manager
policies

 5/26/2021 • 2 minutes to read • Edit Online

DAT E DO C UM EN T VERSIO N C H A N GE DESC RIP T IO N

5/25/2021 1.0 Initial publishing of Windows Package
Manager policies.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/package-manager/package/windows-package-manager-policies-change-history.md

Microsoft PowerToys: Utilities to customize Windows
10

 6/30/2021 • 3 minutes to read • Edit Online

 Processor support

 Current PowerToy utilities

 Awake

 Color Picker

 Fancy Zones

Microsoft PowerToys is a set of utilities for power users to tune and streamline their Windows 10 experience for

greater productivity.

Install PowerToys

x64 : Supported

x86 : In development (see issue #602)

ARM: In development (see issue #490)

The currently available utilities include:

Awake is designed to keep a computer awake without having to manage its power & sleep settings. This

behavior can be helpful when running time-consuming tasks, ensuring that the computer does not go to sleep

or turn off its screens.

ColorPicker is a system-wide color picking utility activated with Win+Shift+C. Pick colors from any currently

running application, the picker automatically copies the color into your clipboard in a configurable format. Color

Picker also contains an editor that shows a history of previously picked colors, allows you to fine-tune the

selected color and to copy different string representations. This code is based on Martin Chrzan's Color Picker.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/powertoys/index.md
https://github.com/microsoft/PowerToys/issues/602
https://github.com/microsoft/PowerToys/issues/490
https://github.com/martinchrzan/ColorPicker

 File Explorer add-ons

 Image Resizer

 Keyboard Manager

 PowerRename

 PowerToys Run

FancyZones is a window manager that makes it easy to create complex window layouts and quickly position

windows into those layouts.

File Explorer add-ons enable preview pane rendering in File Explorer to display SVG icons (.svg) and Markdown

(.md) file previews. To enable the preview pane, select the "View" tab in File Explorer, then select "Preview Pane".

Image Resizer is a Windows Shell Extension for quickly resizing images. With a simple right click from File

Explorer, resize one or many images instantly. This code is based on Brice Lambson's Image Resizer.

Keyboard Manager allows you to customize the keyboard to be more productive by remapping keys and

creating your own keyboard shortcuts. This PowerToy requires Windows 10 1903 (build 18362) or later.

PowerRename enables you to perform bulk renaming, searching and replacing file names. It includes advanced

features, such as using regular expressions, targeting specific file types, previewing expected results, and the

ability to undo changes. This code is based on Chris Davis's SmartRename.

https://github.com/bricelam/ImageResizer
https://github.com/chrdavis/SmartRename

 Shortcut Guide

 PowerToys video walk-through

 Future PowerToy utilities
 Experimental PowerToys

 Video Conference Mute (Experimental)

 Known issues

 Contribute to PowerToys (Open Source)

PowerToys Run can help you search and launch your app instantly - just enter the shortcut Alt+Space and start

typing. It is open source and modular for additional plugins. Window Walker is now included as well. This

PowerToy requires Windows 10 1903 (build 18362) or later.

Windows key shortcut guide appears when a user holds the Windows key down for more than one second and

shows the available shortcuts for the current state of the desktop.

In this video, Clint Rutkas (PM for PowerToys) walks through how to install and use the various utilities available,

in addition to sharing some tips, info on how to contribute, and more.

Install the pre-release experimental version of PowerToys to try the latest experimental utilities, including:

Video Conference Mute is a quick way to globally "mute" both your microphone and camera using ⊞ Win+N
while on a conference call, regardless of the application that currently has focus. This is only included in the pre-

release/experimental version of PowerToys and requires Windows 10 1903 (build 18362) or later.

Search known issues or file a new issue in the Issues tab of the PowerToys repository on GitHub.

PowerToys welcomes your contributions! The PowerToys development team is excited to partner with the power

user community to build tools that help users get the most out of Windows. There are a variety of ways to

contribute:

https://channel9.msdn.com/Shows/Tabs-vs-Spaces/PowerToys-Utilities-to-customize-Windows-10/player?format=ny&nocookie=true
https://github.com/microsoft/PowerToys/releases/
https://github.com/microsoft/PowerToys/issues

 PowerToys release notes

 PowerToys history

 PowerToys roadmap

Write a tech spec

Submit a design concept or recommendation

Contribute to documentation

Identify and fix bugs in the source code

Code new features and PowerToy utilities

Before starting work on a feature that you would like to contribute, read the Contr ibutor 's Guide . The

PowerToys team will be happy to work with you to figure out the best approach, provide guidance and

mentorship throughout feature development, and help avoid any wasted or duplicate effort.

PowerToys release notes are listed on the install page of the GitHub repo. For reference, you can also find the

Release checklist on the PowerToys wiki.

Inspired by the Windows 95 era PowerToys project, this reboot provides power users with ways to squeeze

more efficiency out of the Windows 10 shell and customize it for individual workflows. A great overview of the

Windows 95 PowerToys can be found here.

PowerToys is a rapid-incubation, open source team aimed at providing power users with ways to squeeze more

efficiency out of the Windows 10 shell and customize it for individual workflows. Work priorities will

consistently be examined, reassessed, and adjusted with the aim of improving our users productivity.

New specs for possible PowerToys

Backlog priority list

Version 1.0 Strategy spec, February 2020

https://codeburst.io/on-writing-tech-specs-6404c9791159
https://www.microsoft.com/design/inclusive/
https://docs.microsoft.com/en-us/contribute/
https://github.com/microsoft/PowerToys/tree/master/src
https://github.com/microsoft/PowerToys/tree/master/doc/devdocs
https://github.com/microsoft/PowerToys/blob/master/CONTRIBUTING.md
https://github.com/microsoft/PowerToys/releases/
https://github.com/microsoft/PowerToys/wiki/Release-check-list
https://en.wikipedia.org/wiki/Microsoft_PowerToys
https://socket3.wordpress.com/2016/10/22/using-windows-95-powertoys/
https://github.com/microsoft/PowerToys/wiki/Specs
https://github.com/microsoft/PowerToys/wiki/Roadmap#backlog-priority-list-in-order
https://github.com/microsoft/PowerToys/wiki/Version-1.0-Strategy

Install PowerToys
 6/30/2021 • 2 minutes to read • Edit Online

WARNING

 Install with Windows executable file

 Requirements

 Alternative Install Methods

 Install with Windows Package Manager (Preview)

WinGet install powertoys

 Community-driven install tools

PowerToys v0.37 and beyond will require Windows 10 v1903 or greater. The v1 settings, which supports older Windows

versions, will be removed in v0.37.

We recommend installing PowerToys using the Windows executable button linked below, but alternative install

methods are also listed if you prefer using a package manager.

Install PowerToys

To install PowerToys using a Windows executable file:

1. Visit the Microsoft PowerToys GitHub releases page.

2. Browse the list of stable and experimental versions of PowerToys that are available.

3. Select the Assets drop-down menu to display the files for the release.

4. Select the PowerToysSetup-0.##.#-x64.exe file to download the PowerToys executable installer.

5. Once downloaded, open the executable file and follow the installation prompts.

Windows 10 1803 (build 17134) or later.

.NET Core 3.1 Desktop Runtime. The PowerToys installer will handle this requirement.

x64 architecture currently supported. ARM and x86 support to become available at a later date.

To ensure that your machine meets these requirements, check your Windows 10 version and build number by

selecting the ⊞ Win (Windows key) + R , then type winver , select OK. (Or enter the ver command in Windows

Command Prompt). You can update to the latest Windows version in the Settings menu.

Windows Package Manager (Preview)

Community-driven install tools (Not officially supported)

To install PowerToys using the Windows Package Manager (WinGet) preview:

1. Download PowerToys from Windows Package Manager.

2. Run the following command from the command line / PowerShell:

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/powertoys/install.md
https://aka.ms/installpowertoys
https://github.com/microsoft/PowerToys/releases/
https://dotnet.microsoft.com/download/dotnet-core/thank-you/runtime-desktop-3.1.4-windows-x64-installer
ms-settings:windowsupdate
https://github.com/microsoft/winget-cli/releases

 Install with Chocolatey

choco install powertoys

choco upgrade powertoys

 Install with Scoop

scoop bucket add extras
scoop install powertoys

scoop update powertoys

 Post Install

 Updates

These community-driven alternative install methods are not officially supported and the PowerToys team does

not update or manage these packages.

To install PowerToys using Chocolatey, run the following command from your command line / PowerShell:

To upgrade PowerToys, run:

If you have issues when installing/upgrading, visit the PowerToys package on Chocolatey.org and follow the

Chocolatey triage process.

To install PowerToys using Scoop, run the following command from the command line / PowerShell:

To update PowerToys, run the following command from the command line / PowerShell:

If you have issues when installing/updating, file an issue in the Scoop repo on GitHub.

After successfully installing PowerToys, an overview window will display with introductory guidance on each of

the available utilities.

PowerToys uses an auto-updater that checks for new versions when the app is running. If enabled, a toast

notification will appear when an update is available. Updates can also be checked for manually from the

PowerToys Settings menu under the General tab.

https://chocolatey.org/
https://chocolatey.org/packages/powertoys
https://chocolatey.org/docs/package-triage-process
https://scoop.sh/
https://github.com/lukesampson/scoop/issues

PowerToys running with administrator elevated
permissions

 6/1/2021 • 2 minutes to read • Edit Online

 Options

 Run as administrator elevated processes explained

If you're running any application as an administrator (also referred to as elevated permissions), PowerToys may

not work correctly when the elevated applications are in focus or trying to interact with a PowerToys feature like

FancyZones. This can be addressed by also running PowerToys as an administrator.

There are two options for PowerToys to support applications running as administrator (with elevated

permissions):

[Recommended] : PowerToys will display a prompt when an elevated process is detected. Open

PowerToys Settings . Inside the General tab, select "Restart as administrator".

Enable "Always run as administrator" in the PowerToys Settings .

Windows applications run in User mode by default. To run an application in Administrative mode or as an

elevated process means that app will run with additional access to the operating system.

The simplest way to run an app or program in administrative mode is to right-click the program and select Run

as administrator . If the current user is not an administrator, Windows will ask for the administrator username

and password.

Most apps do not need to run with elevated permission. A common scenario, however, for requiring

administrator permission would be to run certain PowerShell commands or edit the registry.

If you see this prompt (User Access Control prompt), the application is requesting administrator level elevated

permission:

In the case of an elevated command line, typically the title "Administrator" will be appended to the title bar.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/powertoys/administrator.md

 Support for admin mode with PowerToys

 Affected PowerToys utilities

PowerToys only needs elevated administrator permission when interacting with other applications that are

running in administrator mode. If those applications are in focus, PowerToys may not function unless it is

elevated as well.

These are the two scenarios we will not work in:

Intercepting certain types of keyboard strokes

Resizing / Moving windows

Admin mode permissions may be required in the following scenarios:

FancyZones

Shortcut guide

Keyboard remapper

PowerToys Run

Snapping an elevated window (e.g. command prompt) into a Fancy Zone

Moving the elevated window to a different zone

Display shortcut

Key to key remapping

Global level shortcuts remapping

App-targeted shortcuts remapping

Display shortcut

Awake utility
 6/30/2021 • 2 minutes to read • Edit Online

 Get started

NOTE

 PowerToys settings

Awake is a utility tool for Windows designed to keep a computer awake without having to manage its power &

sleep settings. This behavior can be helpful when running time-consuming tasks, ensuring that the computer

does not go to sleep or turn off its screens.

Awake can be used directly from PowerToys settings or as a standalone executable. When the tool is running

from PowerToys, it can be managed from PowerToys settings or the system tray.

Awake does not modify any of the Windows power plan settings, and does not depend on a custom power plan

configuration. Instead, it spawns background threads that tell Windows that they require a specific state of the machine.

In the PowerToys settings view, start Awake by using the Enable Awake toggle. Once enabled, the application

will manage the awakeness state of the computer.

The following Awake states can be selected:

Off (Passive) - The computer awakeness state is unaffected. The application is waiting for user input.

Keep awake indefinitely - The computer stays awake indefinitely, until the user explicitly puts the machine

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/powertoys/awake.md
https://support.microsoft.com/windows/how-to-adjust-power-and-sleep-settings-26f623b5-4fcc-4194-863d-b824e5ea7679

NOTE

 Keep screen on

 System tray

 Command Line Interface (CLI)

A RGUM EN T DESC RIP T IO N

--use-pt-config Use the PowerToys configuration file to manage the settings.
This assumes that there is a settings.json file for Awake,

generated by PowerToys, that contains all required runtime
information. This includes the Behavior Mode (indefinite or
timed), whether screens should be kept on, and what the
values for hours and minutes are for a temporary keep-
awake.
When this argument is used, all other arguments are
ignored. Awake will look for changes in the settings.json

file to update its state.

to sleep or exits/disables the application.

Keep awake temporar ily - Keep machine awake for a pre-defined limited time. Once the time elapses,

computer resumes its previous awakeness state.

Changing the hours or minutes while the computer is kept awake temporarily will reset the timer.

While Awake can keep the computer awake indefinitely or temporarily, in its default state the displays connected

to the machine will turn off, even though the computer won't go to sleep. If you need the displays to be

available, use the Keep screen on switch, which will ensure that all monitors remain on.

To manage the execution of the tool from the system tray, right-click on the Awake icon.

Awake can also be executed as a standalone application, directly from the PowerToys folder. The following

command line arguments can be used when running PowerToys.Awake.exe from the terminal:

--display-on Determines whether the screens should be kept on or off
while the machine is kept awake. Expected values are true

or false .

--time-limit Duration, in seconds, during which Awake keeps the
computer awake. Can be used in combination with
--display-on .

--pid Attaches the execution of Awake to a Process ID (PID). When
the process with a given PID terminates, Awake terminates
as well.

A RGUM EN T DESC RIP T IO N

In absence of command-line arguments, Awake will keep the computer awake indefinitely.

Color Picker utility
 6/1/2021 • 2 minutes to read • Edit Online

 Getting started
 Enable

 Activate

A system-wide color picking utility for Windows 10 that enables you to pick colors from any currently running

application and automatically copies it in a configurable format to your clipboard.

To start using Color Picker, you need to first make sure it is enabled in the PowerToys settings (Color Picker

section).

Once enabled, you can choose one of the following three behaviors to be executed when launching Color Picker

with the activation shortcut Win+Shift+C (note that this shortcut can be changed in the settings dialog):

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/powertoys/color-picker.md

 Select color

 Editor usage

Color Picker with editor mode enabled - Opens Color Picker, after selecting a color, the editor is opened

and the selected color is copied into the clipboard (in the default format - configurable in the settings dialog).

Editor - Opens Editor directly, from here you can choose a color from the history, fine tune a selected color,

or capture a new color with by opening the color picker.

Color Picker only - Opens Color Picker only and the selected color will be copied into the clipboard.

After the Color Picker is activated, hover your mouse cursor over the color you would like to copy and left-click

the mouse button to select a color. If you want to see the area around your cursor in more detail, scroll up to

zoom in.

The copied color will be stored in your clipboard in the format that is configured in the settings (HEX by default).

 Settings

The editor lets you see the history of picked colors (up to 20) and copy their representation in any predefined

string format. You can configure what color formats are visible in the editor, along with the order that they

appear. This configuration can be found in PowerToys settings.

The editor also allows you to fine tune any picked color or get a new similar color. Editor previews different

shades of currently selected color - 2 lighter and 2 darker ones.

Clicking on any of those alternative color shades will add the selection to the history of picked colors (appears

on the top of the colors history list). Color in the middle represents your currently selected color from the colors

history. By clicking on it, the fine tuning configuration control will appear, that will let you change HUE or RGB

values of the current color. Pressing OK will add newly configured color into the colors history.

To remove any color from the colors history, right click a desired color and select Remove.

Color picker will let you change following settings:

Activation shortcut

Behavior of activation shortcut

Format of a copied color (HEX, RGB, etc.)

Order and appearance of color formats in the editor

 Limitations
Color picker can't be displayed on top of the start menu or action center (you can still pick a color).

If the currently focused application was started with an administrator elevation (Run as administrator), the

Color Picker activation shortcut will not work, unless PowerToys was also started with an administrator

elevation.

FancyZones utility
 6/30/2021 • 7 minutes to read • Edit Online

 Getting started
 Enable

 Launch zones editor

FancyZones is a window manager utility for arranging and snapping windows into efficient layouts to improve

the speed of your workflow and restore layouts quickly. FancyZones allows the user to define a set of window

locations for a desktop that are drag targets for windows. When the user drags a window into a zone, the

window is resized and repositioned to fill that zone.

To get started using FancyZones, you need to enable the utility in PowerToys settings and then invoke the

FancyZones editor UI.

Launch the zones editor using the button in the PowerToys Settings menu or by pressing Win+` (note that this

shortcut can be changed in the settings dialog).

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/powertoys/fancyzones.md

 Elevated permission admin apps

 Choose your layout (Layout Editor)

If you have applications that are elevated, run in administrator mode, read PowerToys and running as

administrator for more information.

When first launched, the zones editor presents a list of layouts that can be adjusted by how many windows are

on the monitor. Choosing a layout shows a preview of that layout on the monitor. The selected layout is applied

automatically. Double-clicking the layout will apply it and automatically dismiss the editor.

 Space around zones

 Creating a custom layout

If multiple displays are in use, the editor will detect the available monitors and display them for the user to

choose between. The chosen monitor will then be the target of the selected layout.

The Show space around zones toggle enables you to determine what sort of border or margin will surround

each FancyZone window. The Space around zones field enables you to set a custom value for how wide the

border will be.

The Distance to highlight adjacent zones enables you to set a custom value for the amount of space

between FancyZone windows until they snap together, or before both are highlighted enabling them to merge

together.

With the Zones Editor open, check and uncheck the Show space around zones box after changing the values

to see the new value applied.

The zones editor also supports creating and saving custom layouts. Select the + Create new layout button at

the bottom-right.

There are two ways to create custom zone layouts: Gr id layout and Canvas layout. These can also be thought of

as subtractive and additive models.

The subtractive Grid model starts with a three column grid and allows zones to be created by splitting and

merging zones, resizing the gutter between zones as desired.

To merge two zones, select and hold the left mouse button and drag the mouse until a second zone is selected,

then release the button and a popup menu will show up.

The additive Canvas model starts with a blank layout and supports adding zones that can be dragged and

resized similar to windows.

Canvas layout also has keyboard support for zone editing. Use the Arrows keys to move a zone by 10 pixels, or

Ctrl + Arrows to move a zone by 1 pixel. Use the Shift + Arrows keys to resize a zone by 10 pixels (5 per

edge), or Ctrl + Shift + Arrows to resize a zone by 2 pixels (1 per edge). To switch between the editor and

dialog, press the Ctrl + Tab keys.

 Quickly changing between layouts

With a custom layout, this layout can be configured to a user-defined hotkey to quickly apply it to the desired

desktop. The hotkey can be set by opening the custom layout's edit menu. Once set, the custom layout can be

applied by pressing the Win ⊞ + Ctrl + Alt + [hotkey] binding. The layout can also be applied by pressing the

hotkey when dragging a window.

In the demo below, we start with a default template applied to the screen and 2 custom layouts that we assign

hotkeys for. We then use the Win ⊞ + Ctrl + Alt + [hotkey] binding to apply the first custom layout and bind a

window to it. Finally, we apply the second custom layout while dragging a window and bind the window to it.

Snapping a window to two or more zones

 Shortcut Keys

SH O RTC UT A C T IO N

Win ⊞ + ` The Windows key + backtick (⊞ + `) launches the editor (this
shortcut is editable in the settings dialog)

Win ⊞ + Left/Right Arrow Move focused window between zones (only if
Override Windows Snap hotkeys setting is turned on, in

that case only the Windows ⊞ key + Left Arrow and

Windows key ⊞ + Right Arrow are overridden, while the

Win ⊞ + Up Arrow and Win ⊞ + Down Arrow keep

working as usual)

 Settings

If two zones are adjacent, a window can be snapped to the sum of their area (rounded to the minimum rectangle

that contains both). When the mouse cursor is near the common edge of two zones, both zones are activated

simultaneously, allowing you to drop the window into both zones.

It's also possible to snap to any number of zones: first drag the window until one zone is activated, then press

and hold the Control key while dragging the window to select multiple zones.

To snap a window to multiple zone using only the keyboard, first turn on the two options

Override Windows Snap hotkeys (Win+Arrow) to move between zones and Move windows based on their position .

After snapping a window to one zone, use Win + Control + Alt + arrows to expand the window to multiple

zones.

FancyZones doesn't override the Windows 10 Win ⊞ + Shift + Arrow to quickly move a window to an adjacent

monitor.

SET T IN G DESC RIP T IO N

Configure the zone editor hotkey To change the default hotkey, click on the textbox (it's not
necessary to select or delete the text) and then press on the
keyboard the desired key combination

Hold Shift key to activate zones while dragging Toggles between auto-snap mode with the shift key
disabling snapping during a drag and manual snap mode
where pressing the shift key during a drag enables snapping

Use a non-primary mouse button to toggle zone activation When this option is on, clicking a non-primary mouse
button toggles the zones activation

Override Windows Snap hotkeys (Win ⊞ +Arrow) to move
between zones

When this option is on and FancyZones is running, it
overrides two Windows Snap keys: Win ⊞ + Left Arrow

and Win ⊞ + Right Arrow

Move windows based on their position Allows to use Win ⊞ + Up/Down/Right/Left arrows to snap a
window based on its position relatively to the zone layout

Move windows between zones across all monitors When this option is off, snapping with Win ⊞ + Arrow cycles
the window through the zones on the current monitor, when
is on, it cycles the window through all the zones on all
monitors

Keep windows in their zones when the screen resolution
changes

After a screen resolution change, if this setting is enabled,
FancyZones will resize and reposition windows into the zones
they were previously in

During zone layout changes, windows assigned to a zone will
match new size/positions

When this option is on, FancyZones will resize and position
windows into the new zone layout by maintaining the
previous zone number location of each window

Move newly created windows to the last known zone Automatically move a newly opened window into the last
zone location that application was in

Move newly created windows to the current active monitor
[EXPERIMENTAL]

When this option is on, and "Move newly created windows
to the last known zone" is off or the application doesn't have
a last known zone, it keeps the application on the current
active monitor

Restore the original size of windows when unsnapping When this option is on, unsnapping a window will restore its
size as before it was snapped

Follow mouse cursor instead of focus when launching editor
in a multi-monitor environment

When this option is on, the editor hotkey will launch the
editor on the monitor where the mouse cursor is, when this
option is off, the editor hotkey will launch the editor on
monitor where the current active window is

Show zones on all monitors while dragging a window By default FancyZones shows only the zones available on the
current monitor, this feature may have performance impact
when turned on

Allow zones to span across monitors (all monitors must have
the same DPI scaling)

This option allows to treat all connected monitors as one
large screen. To work correctly it requires all monitors to
have the same DPI scaling factor

Make dragged window transparent When the zones are activated, the dragged window is made
transparent to improve the zones visibility

Zone highlight color (Default #008CFF) The color that a zone becomes when it is the active drop
target during a window drag

Zone Inactive color (Default #F5FCFF) The color that zones become when they are not an active
drop during a window drag

Zone border color (Default #FFFFFF) The color of the border of active and inactive zones

Zone opacity (%) (Default 50%) The percentage of opacity of active and inactive zones

Exclude applications from snapping to zones Add the applications name, or part of the name, one per line
(e.g., adding Notepad will match both Notepad.exe and

Notepad++.exe , to match only Notepad.exe add the

.exe extension)

SET T IN G DESC RIP T IO N

File Explorer add-ons utility
 6/1/2021 • 2 minutes to read • Edit Online

 Preview Pane

 Enabling Preview Pane

File Explorer add-ons currently include:

Preview Pane rendering of SVG icons (.svg)

Preview Pane rendering of Markdown files (.md)

Preview Pane is an existing feature in the Windows File Explorer which shows a lightweight, rich, read-only

preview of the file's contents in the view's reading pane. PowerToys adds two extensions, Markdown and SVG.

To enable, first ensure that "Enable SVG preview", "Enable SVG thumbnails", and "Enable Markdown preview"

are all set to On in the PowerToys Settings.

Next, open Windows File Explorer, select the View tab in the File Explorer ribbon, then select Preview Pane .

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/powertoys/file-explorer.md

Image Resizer utility
 6/1/2021 • 2 minutes to read • Edit Online

 Drag and Drop

Image Resizer is a Windows shell extension for bulk image-resizing. After installing PowerToys, right-click on one

or more selected image files in File Explorer, and then select Resize pictures from the menu.

Image Resizer also allows you to resize images by dragging and dropping your selected files with the r ight

mouse button. This allows you to quickly save your resized pictures in another folder.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/powertoys/image-resizer.md

 Settings
Inside the PowerToys Image Resizer tab, you can configure the following settings.

 Sizes

 Fill vs Fit vs Stretch

 Fallback encoding

Add new preset sizes. Each size can be configured as Fill, Fit or Stretch. The dimension to be used for resizing can

also be configured as Centimeters, Inches, Percent and Pixels.

Fill : Fills the entire specified size with the image. Scales the image proportionally. Crops the image as

needed.

Fit: Fits the entire image into the specified size. Scales the image proportionally. Does not crop the image.

Stretch: Fills the entire specified size with the image. Stretches the image disproportionally as needed. Does

not crop the image

The width and height of the specified size may be swapped to match the orientation (portrait/landscape) of the

current image. To always use the width and height as specified, un-check: Ignore the or ientation of pictures .

The fallback encoder is used when the file cannot be saved in it's original format. For example, the Windows

Metafile (.wmf) image format has a decoder to read the image, but no encoder to write a new image. In this

case, the image cannot be saved in it's original format. Image Resizer enables you to specify what format the

 File

 Auto width/height

 Sub-directories

fallback encoder will use: PNG, JPEG, TIFF, BMP, GIF, or WMPhoto settings. This is not a file type conversion tool,

but only works as a fallback for unsupported file formats.

The file name of the resized image can be modified with the following parameters:

%1 : Original filename

%2 : Size name (as configured in the PowerToys Image Resizer settings)

%3 : Selected width

%4 : Selected height

%5 : Actual height

%6 : Actual width

For example, setting the filename format to: %1 (%2) on the file example.png and selecting the Small file size

setting, would result in the file name example (Small).png .

Setting the format to %1_%4 on the file example.jpg and selecting the size setting Medium 1366 x 768px would

result in the file name: example_768.jpg .

You can also choose to retain the original last modified date on the resized image.

You can leave the height or width empty. This will honor the specified dimension and "lock" the other dimension

to a value proportional to the original image aspect ratio.

You can specify a directory in the filename format to group resized images into sub-directories. For example, a

value of %2\%1 would save the resized image to Small\Sample.jpg

Keyboard Manager utility
 6/1/2021 • 7 minutes to read • Edit Online

The PowerToys Keyboard Manager enables you to redefine keys on your keyboard.

For example, you can exchange the letter A for the letter D on your keyboard. When you select the A key, a D will

display.

You can also exchange shortcut key combinations. For example, the shortcut key, Ctrl+C, will copy text in

Microsoft Word. With PowerToys Keyboard Manager utility, you can exchange that shortcut for ⊞ Win+C). Now,

⊞ Win+C) will copy text. If you do not specify a targeted application in PowerToys Keyboard Manager, the

shortcut exchange will be applied globally across Windows.

PowerToys Keyboard Manager must be enabled (with PowerToys running in the background) for remapped keys

and shortcuts to be applied. If PowerToys is not running, key remapping will no longer be applied.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/powertoys/keyboard-manager.md

NOTE

 Settings

 Remap Keys

There are some shortcut keys that are reserved for the operating system and cannot be replaced. Keys that cannot be

remapped include:

⊞ Win + L and Ctrl + Alt + Del cannot be remapped as they are reserved by the Windows OS.

The Fn (function) key cannot be remapped (in most cases). The F1 - F12 (and F13 - F24) keys can be mapped.

Pause will only send a single keydown event. So mapping it against the backspace key, for instance, and pressing +

holding will only delete a single character.

To create mappings with Keyboard Manager, you will need to open the PowerToys Settings (search for the

PowerToys app in your Windows Start menu, selecting it will open the PowerToys Settings window). Inside

PowerToys Settings, on the Keyboard Manager tab, you will see the options to:

Launch the Remap Keyboard settings window by selecting Remap a Key

Launch the Remap Shortcuts settings window by selecting the Remap a shortcut

To remap a key, changing it to new value, launch the Remap Keyboard settings window with the Remap a Key
button. When first launched, no predefined mappings will be displayed. You must select the + button to add a

new remap.

Once a new remap row appears, select the key whose output you want to change in the “Key” column. Select

the new key value to assign in the “Mapped To” column.

For example, if you want to press A and have B appear :

Key: "A"

Mapped To: "B"

To swap key positions between the "A" and "B" keys, add another remapping with:

Key: "B"

Mapped To: "A"

 Key to Shortcut

NOTE

 Remap Shortcuts

To remap a key to a shortcut (combination of keys), enter the shortcut key combination in the "Mapped To"

column.

For example, if you want to select the "C" key and have it result in "Ctrl + V":

Key: "C"

Mapped To: "Ctrl + V"

Key remapping will be maintained even if the remapped key is used in another shortcut. For example, entering the

shortcut "Alt + C" would result as "Alt + Ctrl + V", since the C key has been remapped to "Ctrl + V".

To remap a shortcut key combination, like "Ctrl + v", select Remap a shortcut to launch the Remap Shortcuts

settings window.

When first launched, no predefined mappings will be displayed. You must select the + button to add a new

remap.

Once a new remap row appears, select the key whose output you want to change in the “Shortcut” column.

Select the new shortcut value to assign in the “Mapped To” column.

For example, the shortcut Ctrl+C copies your selected text. To remap that shortcuts to use the Alt key, rather

than the Ctrl key:

Shortcut: "Ctrl" + "C"

Mapped To: "Alt" + "C"

 Remap a shortcut to a single key

NOTE

 App-specific shortcuts

There are a few rules to follow when remapping shortcuts (these rules only apply on the "Shortcut" column):

Shortcuts must begin with a modifier key: Ctrl, Shift, Alt, or ⊞ Win

Shortcuts must end with an action key (all non-modifier keys): A, B, C, 1, 2, 3, etc.

Shortcuts cannot be longer than 3 keys

It is possible to remap a shortcut (key combination) to a single key press by selecting the Remap a Key button

in PowerToys Settings.

For example, to replace the shortcut key ⊞ Win + < (left arrow) with a single key press, Alt:

Key: "Alt"

Mapped To: "⊞ Win" (Windows key) + < (left arrow)

Shortcut remapping will be maintained even if the remapped key is used in another shortcut. For example, entering the

shortcut "Alt" + "Shift", after remapping the "Alt" key as above, would result in "⊞ Win" + < (left arrow) + "Shift". The order

of keypress matters in this scenario as the action is executed during keydown, not keyup. Pressing the Alt key will first

execute ⊞ Win + Left Arrow. Pressing the Shift key first will execute Shift + ⊞ Win + Left Arrow.

Keyboard Manager enables you to remap shortcuts for only specific apps (rather than globally across Windows).

For example, in the Outlook email app the shortcut "Ctrl + E" is set by default to search for an email. If you

prefer instead to set "Ctrl + F" to search your email (rather than forward an email as set by default), you can

remap the shortcut with "Outlook" set as your "Target app."

Keyboard Manager uses the process-names (not application names) to target apps. For example, Microsoft Edge

is set as "msedge" (process name), not "Microsoft Edge" (application name). To find an application's process

name, open PowerShell and enter the command get-process or open Command Prompt and enter the

command tasklist . This will result in a list of process names for all applications you currently have open.

Below is a list of a few popular application process names.

A P P L IC AT IO N P RO C ESS N A M E

Microsoft Edge msedge.exe

OneNote onenote.exe

Outlook outlook.exe

Teams Teams.exe

Adobe Photoshop Photoshop.exe

File Explorer explorer.exe

Spotify Music spotify.exe

Google Chrome chrome.exe

Excel excel.exe

Word winword.exe

Powerpoint powerpnt.exe

 Keys that cannot be remapped

 How to select a key

 Orphaning Keys

There are certain shortcut keys that are not allowed for remapping. These include:

Ctrl+Alt+ Del (interupt command)

⊞ Win+L (locking your computer)

The function key, Fn, cannot be remapped (in most cases) but the F1-F12 can be mapped.

To select a key or shortcut to remap, you can:

Use the Type Key button.

Use the drop-down menu.

Once you select the Type Key / Shortcut button, a dialogue will pop up in which you can enter the key or

shortcut using your keyboard. Once you’re satisfied with the output, hold Enter to continue. If you’d like to

leave the dialogue, hold the Esc button.

Using the drop-down menu, you can search with the key name and additional drop-down values will appear as

you progress. However, you can not use the type-key feature while the drop-down menu is open.

Orphaning a key means that you mapped it to another key and no longer have anything mapped to it.

For example, if the key is remapped from A -> B, then a key no longer exists on your keyboard that results in A.

To fix this, use + to create another remapped key that is mapped to result in A. To ensure this does not happen

by accident, a warning will display for any orphaned keys.

 Frequently asked questions
 I remapped the wrong keys, how can I stop it quickly?

 Can I use Keyboard Manager at my log-in screen?

 Do I have to turn off my computer for the remapping to take effect?

 Where are the Mac/Linux profiles?

 Will this work on video games?

 Will remapping work if I change my input language?

 Troubleshooting

 Known Issues

For key remapping to work, PowerToys must be running in the background and Keyboard Manager must be

enabled. To stop remapped keys, close PowerToys or disable Keyboard Manger in the PowerToys settings.

No, Keyboard Manager is only available when PowerToys is running and doesn’t work on any password screen,

including Run As Admin.

No, remapping should occur immediately upon pressing Apply .

Currently Mac and Linux profiles are not included.

It depends on how the game accesses your keys. Certain keyboard APIs do not work with Keyboard Manager.

Yes it will. Right now if you remap A to B on English (US) keyboard and then change the language setting to

French, typing A on the French keyboard (Q on the English US physical keyboard) would result in B, this is

consistent with how Windows handles multilingual input.

If you have tried to remap a key or shortcut and are having trouble, it could be one of the following issues:

Run As Admin: Remapping will not work on an app / window if that window is running in administrator

(elevated) mode and PowerToys is not running as administrator. Try running PowerToys as an

administrator.

Not Intercepting Keys: Keyboard Manger intercepts keyboard hooks to remap your keys. Some apps

that also do this and can interfere with Keyboard Manager. To fix this, go to the settings and disable then

re-enable Keyboard Manager.

Caps light indicator not toggling correctly

Remaps not working for FancyZones and Shortcut Guide

Remapping keys like Win, Ctrl, Alt or Shift may break gestures and some special buttons

See the list of open keyboard manager issues.

https://github.com/microsoft/PowerToys/issues/1692
https://github.com/microsoft/PowerToys/issues/3079
https://github.com/microsoft/PowerToys/issues/3703
https://github.com/microsoft/PowerToys/issues?q=is%253Aopen+is%253Aissue+label%253A%2522Product-Keyboard+Shortcut+Manager%2522

PowerRename utility
 6/1/2021 • 6 minutes to read • Edit Online

 Demo

 PowerRename menu

PowerRename is a bulk renaming tool that enables you to:

Modify the file names of a large number of files (without renaming all of the files the same name).

Perform a search and replace on a targeted section of file names.

Perform a regular expression rename on multiple files.

Check expected rename results in a preview window before finalizing a bulk rename.

Undo a rename operation after it is completed.

In this demo, all instances of the file name "Pampalona" are replaced with "Pamplona". Since all of the files are

uniquely named, this would have taken a long time to complete manually one-by-one. PowerRename enables a

single bulk rename. Notice that the "Undo Rename" (Ctrl+Z) command enables the ability to undo the change.

After selecting some files in Windows File Explorer, right-clicking and selecting PowerRename (which will appear

only when enabled in PowerToys), the PowerRename menu will appear. The number of items (files) you've

selected will be displayed, along with search and replace values, a list of options, and a preview window

displaying results of the search and replace values you've entered.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/powertoys/powerrename.md

 Search for

 Replace with

 Options - Use Regular Expressions

 Options - Case Sensitive

 Options - Match All Occurrences

 Options - Exclude Files

Enter text or a regular expression to find the files in your selection that contain the criteria matching your entry.

You will see the matching items in the Preview window.

Enter text to replace the Search for value entered previously that match you're selected files. You can view the

original file name and renamed file in the Preview window.

If checked, the Search value will be interpreted as a regular expression (regex). The Replace value can also

contain regex variables (see examples below). If not checked, the Search value will be interpreted as plain text to

be replaced with the text in the Replace field.

For more information regarding the Use Boost library option in the settings menu for extended regex

functionalities, see the regular expressions section.

If checked, the text specified in the Search field will only match text in the items if the text is the same case. Case

matching will be insensitive (not recognizing a difference between upper and lowercase letters) by default.

If checked, all matches of text in the Search field will be replaced with the Replace text. Otherwise, only the first

instance of the Search for text in the file name will be replaced (left to right).

For example, given the file name: powertoys-powerrename.txt :

Search for : power

Rename with: super

The value of the renamed file would result in:

Match All Occurrences (unchecked): supertoys-powerrename.txt

Match All Occurrences (checked): supertoys-superrename.txt

https://wikipedia.org/wiki/Regular_expression
https://wikipedia.org/wiki/Regular_expression

 Options - Exclude Folders

 Options - Exclude Subfolder Items

 Options - Enumerate Items

 Options - Item Name Only

 Options - Item Extension Only

 Replace using file creation date and time

VA RIA B L E PAT T ERN EXP L A N AT IO N

$YYYY Year represented by a full four or five digits, depending on
the calendar used.

$YY Year represented only by the last two digits. A leading zero is
added for single-digit years.

$Y Year represented only by the last digit.

$MMMM Name of the month

$MMM Abbreviated name of the month

$MM Month as digits with leading zeros for single-digit months.

$M Month as digits without leading zeros for single-digit
months.

$DDDD Name of the day of the week

$DDD Abbreviated name of the day of the week

$DD Day of the month as digits with leading zeros for single-digit
days.

$D Day of the month as digits without leading zeros for single-
digit days.

Files will not be included in the operation. Only folders will be included.

Folders will not be included in the operation. Only files will be included.

Items within folders will not be included in the operation. By default, all subfolder items are included.

Appends a numeric suffix to file names that were modified in the operation. For example: foo.jpg ->

foo (1).jpg

Only the file name portion (not the file extension) is modified by the operation. For example: txt.txt ->

NewName.txt

Only the file extension portion (not the file name) is modified by the operation. For example: txt.txt ->

txt.NewExtension

The creation date and time attributes of a file can be used in the Replace with text by entering a variable pattern

according to the table below.

$hh Hours with leading zeros for single-digit hours

$h Hours without leading zeros for single-digit hours

$mm Minutes with leading zeros for single-digit minutes.

$m Minutes without leading zeros for single-digit minutes.

$ss Seconds with leading zeros for single-digit seconds.

$s Seconds without leading zeros for single-digit seconds.

$fff Milliseconds represented by full three digits.

$ff Milliseconds represented only by the first two digits.

$f Milliseconds represented only by the first digit.

VA RIA B L E PAT T ERN EXP L A N AT IO N

 Regular Expressions

 Examples of regular expressions
 Simple matching examples

For example, given the file names:

powertoys.png , created on 11/02/2020

powertoys-menu.png , created on 11/03/2020

Enter the criteria to rename the items:

Search for : powertoys

Rename with: $MMM-$DD-$YY-powertoys

The value of the renamed file would result in:

Nov-02-20-powertoys.png

Nov-03-20-powertoys-menu.png

For most use cases, a simple search and replace is sufficient. There may be occasions, however, in which

complicated renaming tasks come along that require more control. Regular Expressions can help.

Regular Expressions define a search pattern for text. They can be used to search, edit and manipulate text. The

pattern defined by the regular expression may match once, several times, or not at all for a given string.

PowerRename uses the ECMAScript grammar, which is common amongst modern programming languages.

To enable regular expressions, check the "Use Regular Expressions" checkbox.

Note: You will likely want to check "Match All Occurrences" while using regular expressions.

To use the Boost library instead of the standard library, check the Use Boost library option in the PowerToys

settings. It enables extended features, like lookbehind, which are not supported by the standard library.

https://wikipedia.org/wiki/Regular_expression
https://wikipedia.org/wiki/ECMAScript
https://www.boost.org/doc/libs/1_74_0/libs/regex/doc/html/boost_regex/syntax/perl_syntax.html
https://www.boost.org/doc/libs/1_74_0/libs/regex/doc/html/boost_regex/syntax/perl_syntax.html#boost_regex.syntax.perl_syntax.lookbehind

SEA RC H F O R DESC RIP T IO N

^ Match the beginning of the filename

$ Match the end of the filename

.* Match all the text in the name

^foo Match text that begins with "foo"

bar$ Match text that ends with "bar"

^foo.*bar$ Match text that begins with "foo" and ends with "bar"

.+?(?=bar) Match everything up to "bar"

foo[\s\S]*bar Match everything between "foo" and "bar"

 Matching and variable examples

SEA RC H F O R REP L A C E W IT H DESC RIP T IO N

(.*).png foo_$1.png Prepends "foo_" to the existing file
name

(.*).png $1_foo.png Appends "_foo" to the existing file
name

(.*) $1.txt Appends ".txt" extension to existing file
name

(^\w+\.$)|(^\w+$) $2.txt Appends ".txt" extension to existing file
name only if it does not have an
extension

(\d\d)-(\d\d)-(\d\d\d\d) $3-$2-$1 Move numbers in the filename: "29-
03-2020" becomes "2020-03-29"

 Additional resources for learning regular expressions

 File List Filters

When using the variables, the "Match All Occurrences" option must be enabled.

There are great examples/cheat sheets available online to help you

Regex tutorial — A quick cheatsheet by examples

ECMAScript Regular Expressions Tutorial

Filters can be used in PowerRename to narrow the results of the rename. Use the Preview window to check

expected results. Select the column headers to switch between filters.

Original , the first column in the Preview window cycles between:

Checked: The file is selected be renamed.

Unchecked: The file is not selected to be renamed (even though it fits the value entered in the search

https://medium.com/factory-mind/regex-tutorial-a-simple-cheatsheet-by-examples-649dc1c3f285
https://o7planning.org/en/12219/ecmascript-regular-expressions-tutorial

criteria).

Renamed, the second column in the Preview windows can be toggled.

The default preview will show all selected files, with only files matching the Search for criteria

displaying the updated rename value.

Selecting the Renamed header will toggle the preview to only display files that will be renamed. Other

selected files from your original selection will not be visible.

PowerToys Run utility
 6/30/2021 • 4 minutes to read • Edit Online

 Requirements

 Features

 Settings

PowerToys Run is a quick launcher for power users that contains some additional features without sacrificing

performance. It is open source and modular for additional plugins.

To use PowerToys Run, select Alt+Space and start typing!

If that shortcut isn't what you like, don't worry, it is fully configurable in the settings.

Windows 10 version 1903 or higher

After installing, PowerToys must be enabled and running in the background for this utility to work

PowerToys Run features include:

Search for applications, folders, or files

Search for running processes (previously known as WindowWalker)

Clickable buttons with keyboard shortcuts (such as Open as administrator or Open containing folder)

Invoke Shell Plugin using > (for example, > Shell:startup will open the Windows startup folder)

Do a simple calculation using calculator

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/powertoys/run.md
https://github.com/betsegaw/windowwalker/

SET T IN GS A C T IO N

Open PowerToys Run Define the keyboard shortcut to open/hide PowerToys Run

Ignore shortcuts in Fullscreen mode When in full-screen (F11), Run won't be engaged with the
shortcut

Maximum number of results Maximum number of results shown without scrolling

Clear the previous query on launch When launched, previous searches will not be highlighted

Disable drive detection warning The warning, if all of your drives aren't indexed, will no longer
be visible.

 Keyboard shortcuts

SH O RTC UT S A C T IO N

Alt+Space Open or hide PowerToys Run

Esc Hide PowerToys Run

Ctrl+Shift+Enter (Only applicable to applications) Open the selected
application as administrator

Ctrl+Shift+E (Only applicable to applications and files) Open containing
folder in File Explorer

Ctrl+C (Only applicable to folders and files) Copy path location

Tab Navigate through the search result and context menu
buttons

 Action keys

A C T IO N KEY A C T IO N

= Calculator only. Example =2+2 .

? File searching only. Example ?road to find roadmap.txt .

. Installed programs only. Example .code to get Visual

Studio Code. See Program parameters for options on adding
parameters to a program's startup.

// URLs only. Example // to launch your default browser, or

//docs.microsoft.com to have your default browser go to

https://docs.microsoft.com.

The following Run options are available in the PowerToys settings menu.

These default activation phrases will force PowerToys run into only targeted plugins.

https://docs.microsoft.com/en-us/

< Running processes only. Example <outlook to find all

processes that contain outlook.

> Shell command only. Example >ping localhost to do a

ping query.

: Registry keys only. Example :hkcu to search for the

HKEY_CURRENT_USER registry key.

! Windows services only. Example !alg to search for the

Application Layer Gateway service to be started or stopped.

{ Visual Studio Code previously opened workspaces, remote
machines (SSH or Codespaces) and containers. Example
{powertoys to search for workspaces that contain

'powertoys' in their paths. This plugin is off by default.

%% Unit converter only. Example %% 10 ft in m to calculate

the number of meters in 10 feet.

$ Windows settings only. Example $ Add/Remove Programs

to launch the Windows settings menu for managing installed
programs. To list all settings of an area category, type :

after the category name. Ex: $ Device: to view all available

Device settings.

A C T IO N KEY A C T IO N

 System commands

A C T IO N KEY A C T IO N

Shutdown Shuts down the computer

Restart Restarts the computer

Sign Out Signs current user out

Lock Locks the computer

Sleep Sleeps the computer

Hibernate Hibernates the computer

Empty Recycle Bin Empties the recycle bin

 Plugin manager

PowerToys Run enables a set of system level actions that can be executed.

The PowerToys Run settings menu includes a plugin manager that allows you to enable/disable the various

plugins currently available. By selecting and expanding the sections, you can customize the activation phrases

used by each plugin. In addition, you can select whether a plugin appears in global results, as well as set

 Program parameters

 Monitor Positioning

 Windows Search settings

additional plugin options where available.

The PowerToys Run program plugin allows for program arguments to be added when launching an application.

The program arguments must follow the expected format as defined by the program's command line interface.

For example, when launching Visual Studio Code, you can specify the folder to be opened with:

Visual Studio Code -- C:\myFolder

Visual Studio Code also supports a set of command line parameters, which can be utilized with their

corresponding arguments in PowerToys Run to, for instance, view the difference between files:

Visual Studio Code -d C:\foo.txt C:\bar.txt

If the program plugin's option "Include in global result" is not selected, be sure to include the activation phrase,

. by default, to invoke the plugin's behavior :

.Visual Studio Code -- C:\myFolder

If multiple monitors are in use, PowerToys Run can be launched on the desired monitor by configuring the

appropriate launch behavior in the Settings menu. Options include opening on:

Primary monitor

Monitor with mouse cursor

Monitor with focused window

If the Windows Search plugin is not set to cover all drives, you will receive the following warning:

https://code.visualstudio.com/docs/editor/command-line

You can turn off the warning in the PowerToys Run plugin manager options for Windows Search, or select the

warning to expand which drives are being indexed. After selecting the warning, the Windows 10 settings

"Searching Windows" options menu will open.

In this "Searching Windows" menu, you can:

Select "Enhanced" mode to enable indexing across all of the drives on your Windows 10 machine.

Specify folder paths to exclude.

Select the "Advanced Search Indexer Settings" (near the bottom of the menu options) to set advanced index

settings, add or remove search locations, index encrypted files, etc.

 Known issues

 Attribution

For a list of all known issues and suggestions, see the PowerToys product repo issues on GitHub.

Wox

Beta Tadele's Window Walker

https://github.com/microsoft/PowerToys/issues?q=is%253Aopen+is%253Aissue+label%253A%2522Product-PowerToys+Run%2522
https://github.com/Wox-launcher/Wox/
https://github.com/betsegaw/windowwalker

Windows key shortcut guide
 6/30/2021 • 2 minutes to read • Edit Online

 Usage

IMPORTANT

 Settings

This guide uses PowerToys to display common keyboard shortcuts that use the Windows ⊞ key.

Open the shortcut guide with the shortcut key combination: ⊞ Win + ? (this may require using the Shift key).

An overlay will appear showing keyboard shortcuts that use the Windows ⊞ key, including:

common Windows shortcuts,

shortcuts for changing the position of the active window,

taskbar shortcuts.

Keyboard shortcuts using the Windows key (⊞ Win) can be used while the guide is displayed. The result of

those shortcuts (active window moved, arrow shortcut behavior changes, etc) will be displayed in the guide.

Pressing the shortcut key combination again will dismiss the overlay.

Tapping the Windows key (⊞ Win) will display the Windows Start menu.

The PowerToys app must be running and Shortcut Guide must be enabled in the PowerToys settings for this feature to be

used.

These configurations can be edited from the PowerToys Settings:

Open Shor tcut Guide : The shortcut used to launch the shortcut guide.

Opacity of background: This slider bar controls the opacity of the Shortcut Guide overlay. (The degree to

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/powertoys/shortcut-guide.md

which you can see through it).

Video Conference Mute (Preview)
 6/1/2021 • 2 minutes to read • Edit Online

IMPORTANT

 Usage

NOTE

 Settings

This is a preview feature and only included in the pre-release version of PowerToys. Running this pre-release requires

Windows 10 version 1903 (build 18362) or later.

Quickly mute your microphone (audio) and turn off your camera (video) while on a conference call with a single

keystroke, regardless of what application has focus on your computer.

The default settings to use Video Conference Mute are:

⊞ Win+N to toggle both Audio and Video at the same time

⊞ Win+Shift+A to toggle microphone

⊞ Win+Shift+O to toggle video

When using the microphone and/or camera toggle shortcut keys, you will see a small toolbar window display

letting you know whether the your Microphone and Camera are set to on, off, or not in use. You can set the

position of this toolbar in the Video Conference Mute tab of PowerToys settings.

Remember that you must have the pre-release/experimental version of PowerToys installed and running, with the Video

Conference Mute feature enabled in PowerToys settings in order to use this utility.

The Video Conference Mute tab in PowerToys settings provides the following options:

Shor tcuts: Change the shortcut key used to mute your microphone, camera, or both combined.

Selected microphone: Select the microphone on your machine that this utility will target.

Selected camera: Select the camera on your machine that this utility will target.

Camera overlay image: Select an image to that will be used as a placeholder when your camera is turned

off. (By default, a black screen will appear when your camera is turned off with this utility).

Toolbar : Determine the position where the Microphone On, Camera On toolbar displays when toggled (top

right corner by default).

Show toolbar on: Select whether you prefer the toolbar to be displayed on the main monitor only (default)

or on all monitors.

Hide toolbar when both camera and microphone are unmuted: A checkbox is available to toggle this

option.

https://github.com/MicrosoftDocs/windows-uwp/blob/docs/hub/powertoys/video-conference-mute.md
https://github.com/microsoft/PowerToys/releases/

 How does this work under the hood

 Debug the camera driver

C:\Windows\ServiceProfiles\LocalService\AppData\Local\Temp\PowerToysVideoConference.log

 Known issues

Application interact with audio and video in different ways.

If a camera stops working, the application using it tends not to recover until the API does a full reset. To toggle

the global privacy camera on and off while using the camera in an application, typically it will crash and not

recover.

So, how does PowerToys handle this so you can keep streaming?

Audio: PowerToys uses the global microphone mute API in Windows. Apps should recover when this is

toggled on and off.

Video: PowerToys has a virtual driver for the camera. The video is routed through the driver and back to the

application. Selecting the Video Conference Mute shortcut key stops video from streaming, but the

application still thinks it is receiving video, the video is just replaced with black or the image placeholder

you've saved in the settings.

To debug the camera driver, look in this folder on your machine:

You could also create an empty PowerToysVideoConferenceVerbose.flag in the same directory to enable verbose

logging mode in the driver.

To view all of the known issues currently open on the Video Conference Mute utility, see PowerToys tracking

issue #6246 on GitHub. The PowerToys development team and contributor community is actively working

toward resolving these issues and plans to keep the utility in pre-release until essential issues are resolved.

https://github.com/microsoft/PowerToys/issues/6246

	Cover Page
	Windows development environment
	Overview
	Workflow & performance tips
	Developer stories
	Popular tutorials
	Mac to Windows guide
	Keyboard shortcuts

	Development paths
	Get started with JavaScript
	Overview
	Get started with NodeJS
	Overview
	Install on WSL
	Install on Windows
	Tutorial for beginners

	Get started with React
	Overview
	Install on WSL
	Install on Windows
	Install React Native for Windows
	Install React Native for Android
	Install NextJS
	Install Gatsby
	Tutorial for beginners

	Get started with Vue
	Overview
	Install on WSL
	Install on Windows
	Install NuxtJS
	Tutorial for beginners

	Get started with Python
	Overview
	Get started for beginners
	Get started with web dev
	Get started with automation
	FAQs

	Get started with Android
	Overview
	Get started with Native Android
	Get started with Cross-platform
	Xamarin Native
	Xamarin Forms
	React Native
	PWA (Ionic, PhoneGap, Cordova)

	Defender settings to improve performance
	Test on device or emulator

	Get started with C and C++
	Get started with C#
	Get started with Docker
	Get started with Powershell
	Get started with databases on WSL
	Get started with Rust
	Contents
	Overview of developing on Windows with Rust
	Set up your dev environment
	Rust for Windows
	RSS reader tutorial (Rust for Windows)

	Tools and platforms
	Windows Subsystem for Linux
	Windows Terminal
	Windows Package Manager
	Overview
	Use the winget tool
	Overview
	export command
	features command
	hash command
	help command
	import command
	install command
	list command
	search command
	settings command
	show command
	source command
	uninstall command
	upgrade command
	validate command

	Submit packages
	Overview
	Create your package manifest
	Submit your manifest to the repository
	Validation process
	Troubleshooting submissions
	Binary validation errors
	Repository policies
	Repository policies change history

	PowerToys
	Overview
	About PowerToys
	Install PowerToys
	Run in admin mode

	Awake
	Color Picker
	FancyZones
	File Explorer add-ons
	Image Resizer
	Keyboard Manager
	PowerRename
	PowerToys Run
	Shortcut Guide
	Video Conference Mute

	VS Code
	Visual Studio
	Azure
	.NET

